Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Chemists Add Color to Chemical Reactions

Tuesday, May 10, 2016, By Rob Enslin
Share
College of Arts and SciencesResearch and Creative

Chemists in the College of Arts and Sciences have come up with an innovative new way to visualize and monitor chemical reactions in real time.

Tennyson Doane, left, and Kevin Cruz '18 hold perovskites of different colors.

Tennyson Doane, left, and Kevin Cruz ’18 hold perovskites of different colors.

Members of the Maye Research Group in the Department of Chemistry have designed a nanomaterial that changes color when it interacts with ions and other small molecules during a chemical reaction.

The subject of an article in ACS Nano (American Chemical Society, 2016), their discovery enables researchers to monitor reactions qualitatively with the naked eye and quantitatively with simple instrumentation.

“In many cases, a chemical reaction between molecules occurs in a solution that is colorless and transparent or looks like a milky suspension,” says Mathew Maye, associate professor of chemistry and the experiment’s team leader. “The only way to know if a reaction has occurred or not is to perform extensive analysis after a multi-step purification.”

photo timeline of reaction monitoring

A photo timeline of reaction monitoring using perovskite fluorescence

In an attempt to figure out why and how fast a reaction occurs (if at all), the group has designed a nanoparticle that reacts with byproducts of the reaction. “When the reactions occurs, the nanoparticle fluoresces at a different color, allowing us to gauge kinetics by eye, instead of with a million-dollar spectrometer,” Maye says.

Central to the group’s work is an emerging class of nanomaterials called perovskites. A perovskite is a special class of crystal, typically made up of metal ions and oxygen. The group’s perovskites are composed of metal ions and a halide.

At the nanoscale, perovskites are photo-luminescent, meaning that they emit light when “excited” by a laser or lamp. That the colors they emit are determined, in part, by their ion concentrations makes perovskites unique among nanomaterials.

It also makes them ripe for application. Research groups in industry and academia see potential for perovskites in solar cells, light-emitting diodes, lasers and photo detectors.

Tennyson Doane, a post-doctoral researcher in the group, is the article’s co-corresponding author with Maye. “We knew about the potential of these materials in energy research,” Doane says. “We are interested in energy as well, and had this crazy idea of trying to use the ion concentration ratios of perovskites to detect ions in solution, and then perhaps monitor the chemical reaction, which is very difficult to do. We had no idea if it would work or not, so we just decided to go for it.”

The group started by working with a very simple system that involved organic reactions of molecules called organohalides. When these molecules react, often forming carbon-carbon double bonds in what is known as an elimination reaction, the halide is released. (The halide is a bromine, chlorine or iodine ion.) Typically, the halide is an unimportant side-product of the reaction, until now.

“Our technology allows us to accurately detect the halide release,” says Kevin Cruz ’18, a chemistry major and co-author of the article. “When the reaction starts, the perovskite fluoresces bright red. As the halide is released, or exchanged in the chemical reaction, our particle absorbs it, and the fluorescence color changes proportionally to the halide concentration—from red to orange to yellow to green. When the color is green, the reaction is over.”

Explains Doane: “Added to that is the fact that the perovskite concentration is very low, you just have to add a small amount to the reaction for observation. We have been able to calibrate the system very accurately, and from that can measure chemical kinetics in a new ‘colorimetric’ way.”

Maye offers nothing but praise for Doane and Cruz, stating that what they have accomplished in a short amount of time and on a small budget is “amazing.”

“No one, right now, is thinking about monitoring a chemical reaction this way,” Maye adds. “Our team is able to measure very precise chemical kinetics by monitoring the color change with nothing more than an ultraviolet lightbulb or a cheap fluorescence spectrometer.”

In addition to Doane, Cruz and Maye, the article was co-written by Kayla Ryan G’15, Ph.D. student Laxmikant Pathade and Huidong Zang and Mircea Cotlet at the Center for Functional Nanomaterials at Brookhaven National Laboratory, each of whom made important measurements in the study.

The group’s technology is patent-pending at the University. Maye says they are testing the approach’s applicability to a wide library of chemical reactions and its effectiveness at measuring low concentrations of ions and reactive molecules.

“Who knows, maybe in the future, every chemist will use a Syracuse-based perovskite for monitoring their reactions,” he adds.

  • Author

Rob Enslin

  • Recent
  • Lender Center New York Event Gathers Wealth Gap Experts
    Wednesday, July 30, 2025, By Diane Stirling
  • After Tragedy, Newhouse Grad Rediscovers Her Voice Through Podcasting
    Wednesday, July 30, 2025, By Chris Velardi
  • Registration Now Open for Orange Central Homecoming 2025
    Wednesday, July 30, 2025, By Chris Velardi
  • Back-to-School Shopping: More Expensive and Less Variety of Back-to-School Items
    Tuesday, July 29, 2025, By Daryl Lovell
  • Imam Hamza Gürsoy Appointed as Muslim Chaplain at Hendricks Chapel
    Tuesday, July 29, 2025, By Dara Harper

More In STEM

Inspiring the Next Generation of STEM Enthusiasts

A friendly competition is brewing in the corner of a basement classroom in Link Hall during the annual STEM Trekkers summer program, where students are participating in a time-honored ritual: seeing who can build a paper airplane that travels the…

5 Surprisingly Simple Ways to Use Generative Artificial Intelligence at Work

Not too long ago, generative artificial intelligence (AI) might’ve sounded like something out of a sci-fi movie. Now it’s here, and it’s ready to help you write emails, schedule meetings and even create presentations. In a recent Information Technology Services…

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Star Scholar: Julia Fancher Earns Second Astronaut Scholarship for Stellar Research

Julia Fancher, a rising senior majoring in physics and mathematics in the College of Arts and Sciences (A&S), a logic minor in A&S and a member of the Renée Crown University Honors Program, has been renewed as an Astronaut Scholar for…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.