Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Physicists Achieve Success with Shape-Shifting Water Droplets

Friday, March 11, 2016, By Rob Enslin
Share
College of Arts and SciencesResearch and Creative

Physicists in the College of Arts and Sciences are close to figuring out how to make biologically inspired robots that can change shape according to their environment.

Sheets of liquid droplets can spontaneously and reversibly change their shape.

Sheets of liquid droplets can spontaneously and reversibly change their shape.

A team of researchers, led by Mark Bowick, professor of physics and director of the University’s Soft Matter Program, has demonstrated how sheets of liquid drops can spontaneously and reversibly change their shape. Their findings are the subject of an article in Physical Review Letters (American Physical Society, 2016) and a Synopsis at http://physics.aps.org.

The article is co-authored by Bowick; Jennifer Schwarz, assistant professor of physics; Tao Zhang G’15, a postdoctoral researcher at the University of Pittsburgh and a Ph.D. alumnus of Syracuse; and Duanduan Wan, a Ph.D. candidate at Syracuse.

“Just as robots are able to pick up things and then put them down [a behavior known as reversibility], we’ve designed and modeled a three-dimensional network of water droplets to do the same,” says Bowick, an expert in condensed matter theory and mathematical physics. “Through biological self-assembly, we’ve been able to create wild and wonderful shapes, like the petals of a flower or the body of a snake, starting with entirely flat layers. Reversibility is engineered by introducing an osmotic interaction to the network.”

physicspeepsThe implications for soft robotics—“a first-generation soft robot that can grab its load, squeeze into a tight space and unload, repeatedly,” Bowick adds—are significant, possibly surpassing the capabilities of conventional hard robotics.

Underpinning such work is self-assembly, the process by which smaller components organize into ordered structures. Drawing on previous experiments, in which biologists have shown how micron-sized droplets self-assemble into various shapes, Bowick and his colleagues devised a theoretical emulsion by immersing water droplets in oil. The result was something like mayonnaise, but with droplets of water instead of oil.

Conjoined by permeable lipid molecules, the droplets formed a tissue-like structure. Salt was then added to create osmotic pressure, causing the sheets of droplets to fold into various three-dimensional structures.

“By swelling some of the droplets and shrinking others, the droplets morphed in size, and the entire network shifted its shape,” Bowick says. “Such shape-shifting is the next important step toward osmotic robotics in this system.”

Syracuse researchers focused their attention on a four-petal design that spontaneously folded to produce a hollow sphere. They also demonstrated how to reverse the shape change by placing the sphere within a liquid with a higher solute concentration.

“The droplets in the folding sphere lost water and shrank, causing the hollow sphere to unfold back to its original shape,” Bowick adds.

Duanduan Wang, left, and Tao Zhang G'15

Duanduan Wang, left, and Tao Zhang G’15

The renowned physicist says the experience has been “thoroughly collaborative,” and included three years of “intense” weekly meetings. He reserves special praise for Wan and Zhang: “They made it possible by their dedication to this long and ambitious project.”

Based in the Department of Physics, members of the Soft Matter Program explore the science of easily deformable matter, including liquids, colloids, polymers, foams, gels, granular materials and various biological materials. The program is co-organizing a multinational conference titled “Active and Smart Matter: A New Frontier for Science and Engineering,” running June 20-23.

  • Author

Rob Enslin

  • Recent
  • Whitman’s Johan Wiklund Named a Top Scholar Globally for Business Research Publications
    Tuesday, June 17, 2025, By Caroline K. Reff
  • Lab THRIVE: Advancing Student Mental Health and Resilience
    Thursday, June 12, 2025, By News Staff
  • On Your Mark, Get Set, Go Orange! Faculty and Staff at the Syracuse WorkForce Run (Gallery)
    Thursday, June 12, 2025, By News Staff
  • Oren Lyons Jr., Roy Simmons Jr. Honored With Alfie Jacques Ambassador Award
    Wednesday, June 11, 2025, By John Boccacino
  • McDonald Assumes New Role as Associate Vice President for Research
    Wednesday, June 11, 2025, By Wendy S. Loughlin

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.