Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Living in the Material World

Friday, November 20, 2015, By Elizabeth Droge-Young
Share
College of Arts and Sciencesresearch

Understanding the mechanics of cell biology, such as how cells move and form organized structures, has long interested scientists. Addressing these issues by thinking of biological structures as materials may shed light on topics as diverse as how cancer cells move throughout the body or why the brain has ridges.

Jennifer Schwarz

Jennifer Schwarz

Jennifer Schwarz, assistant professor of physics in the College of Arts and Sciences, is developing new insights into biological structure, thanks to a $315,000 grant award from the National Science Foundation (NSF). She is using the three-year award to study the organization of an internal “skeleton” of cells and how its structure affects the overall mechanics of cells and larger biological structures, as well as the physical organization of nonliving systems.

Schwarz’s work focuses on rigidity transition in nonliving systems. Rigidity occurs when particles in a fluid, flowing substance become so tightly packed that they form a solid. For example, in a partially filled jar of pennies, coins may slosh around when shaken. But if more coins are packed into the jar, the mass of pennies will become rigid and no longer freely flow.

Schwarz studies this transition process to understand how a solid collection of randomly packed particles can return to a fluid, with the deletion of only one particle. Such understanding may help predict characteristics of nonliving systems, such as how sand avalanches occur.

Her grant project also seeks to understand how the principles of rigidity extend into biological systems. “Understanding the mechanics of these disordered systems, whether they are inside a cell or brain tissue, and how these systems are organized could have interesting implications,” she says.

Cell movement is ripe for investigations into rigidity. Cells are more than stationary “bags of water,” Schwarz says. In fact, cells use interior filamentous supports, collectively known as a cytoskeleton, to maintain their shape.

A digital rendering of a filament network

A digital rendering of a filament network

“All of these filaments can intermingle and connect—you can think of it as a little erector set structure in a cell,” she says. Cell filaments then undergo dynamic remodeling to acquire and lose rigidity to enable movement. Existing filaments at the front end of a moving cell can send off small branches of new filament to inch the entire cell forward. Cancer cells use this type of movement to spread themselves throughout the host’s body, making this line of inquiry particularly important.

Schwarz also plans to investigate the mechanics of complex organs such as the brain. Brain tissue is composed of different cell types, including neurons and support cells called glial cells. Glial cells have an interesting trait—when compressed, they stiffen. Schwarz says this is opposite to the intuitive expectation that applying force to the many tiny filaments would make them buckle, making the cell more squishy. She hopes to figure out what explains the stiffness of glial cells, as well as the mechanics underlying why the brain is grooved in general.

Schwarz will employ computer modeling to investigate these complex biological questions in a more tractable way. By controlling physical influences on theoretical systems, she will be able to get down to the basics of how rigidity arises and is maintained in living systems, and how rigid structures respond to external pressures. This approach would enable her to systematically study the role of different forces that contribute to rigidity, such as friction, which would be impossible to avoid in a physical system.

This grant award follows Schwarz’s receipt of a 2007 NSF CAREER award, which recognized her exemplary research and teaching record. She has been a member of the physics department since 2005.

  • Author

Elizabeth Droge-Young

  • Recent
  • Rockell Brown Burton Joins Newhouse School as Associate Dean of Inclusivity, Diversity, Equity and Accessibility
    Monday, May 23, 2022, By Wendy S. Loughlin
  • Corinne Sartori Joins Libraries as Accessibility Specialist
    Monday, May 23, 2022, By Cristina Hatem
  • Eight New Recruits Begin Campus Peace Officer Academy
    Thursday, May 19, 2022, By Christine Weber
  • Media Tip Sheet: Consequences of China Lockdown
    Thursday, May 19, 2022, By Vanessa Marquette
  • Dean Rajiv ‘Raj’ Dewan to Step Down as Dean of the School of Information Studies
    Thursday, May 19, 2022, By News Staff

More In STEM

Dean Rajiv ‘Raj’ Dewan to Step Down as Dean of the School of Information Studies

Rajiv “Raj” Dewan, dean of the School of Information Studies, has announced he will conclude his deanship on June 30, 2022. Dewan plans to return to full-time faculty duties while continuing his research. David Seaman, dean of Syracuse University Libraries…

Biology and Earth and Environmental Sciences Departments Come Together on Diversity and Engagement Initiatives

In 1948, Professor James Hope Birnie became Syracuse University’s first African American faculty member in biology, teaching here until 1951. He was also one of its first biology faculty members to be supported by the National Institutes of Health (NIH)….

Black Hole Image Shows Einstein Was Right, Once Again

Today a team of astronomers announced they successfully captured the first direct image of the black hole at the center of the Milky Way galaxy. Duncan Brown is the Charles Brightman Endowed Professor of Physics at Syracuse University’s College of…

Biomedical and Chemical Engineering Professor’s Research Team Receives Multiple Awards at Society for Biomaterials Conference

Biomedical and chemical engineering Professor Mary Beth Monroe attended the Society for Biomaterials (SFB) 2022 meeting in Baltimore, Maryland, with Ph.D. students Anand Vakil, Henry Beaman, Changling Du and Maryam Ramezani, master’s student Natalie Petryk ’21, G’22 and undergraduate students Caitlyn…

Viewing a Microcosm Through a Physics Lens

“What can physics offer biology?” This was how Alison Patteson, assistant professor in the College of Arts and Sciences’ physics department and a faculty member in the BioInspired Institute, began the explanation of why her physics lab was studying bacteria. In…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2022 Syracuse University News. All Rights Reserved.