Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Living in the Material World

Friday, November 20, 2015, By Elizabeth Droge-Young
Share
College of Arts and Sciencesresearch

Understanding the mechanics of cell biology, such as how cells move and form organized structures, has long interested scientists. Addressing these issues by thinking of biological structures as materials may shed light on topics as diverse as how cancer cells move throughout the body or why the brain has ridges.

Jennifer Schwarz

Jennifer Schwarz

Jennifer Schwarz, assistant professor of physics in the College of Arts and Sciences, is developing new insights into biological structure, thanks to a $315,000 grant award from the National Science Foundation (NSF). She is using the three-year award to study the organization of an internal “skeleton” of cells and how its structure affects the overall mechanics of cells and larger biological structures, as well as the physical organization of nonliving systems.

Schwarz’s work focuses on rigidity transition in nonliving systems. Rigidity occurs when particles in a fluid, flowing substance become so tightly packed that they form a solid. For example, in a partially filled jar of pennies, coins may slosh around when shaken. But if more coins are packed into the jar, the mass of pennies will become rigid and no longer freely flow.

Schwarz studies this transition process to understand how a solid collection of randomly packed particles can return to a fluid, with the deletion of only one particle. Such understanding may help predict characteristics of nonliving systems, such as how sand avalanches occur.

Her grant project also seeks to understand how the principles of rigidity extend into biological systems. “Understanding the mechanics of these disordered systems, whether they are inside a cell or brain tissue, and how these systems are organized could have interesting implications,” she says.

Cell movement is ripe for investigations into rigidity. Cells are more than stationary “bags of water,” Schwarz says. In fact, cells use interior filamentous supports, collectively known as a cytoskeleton, to maintain their shape.

A digital rendering of a filament network

A digital rendering of a filament network

“All of these filaments can intermingle and connect—you can think of it as a little erector set structure in a cell,” she says. Cell filaments then undergo dynamic remodeling to acquire and lose rigidity to enable movement. Existing filaments at the front end of a moving cell can send off small branches of new filament to inch the entire cell forward. Cancer cells use this type of movement to spread themselves throughout the host’s body, making this line of inquiry particularly important.

Schwarz also plans to investigate the mechanics of complex organs such as the brain. Brain tissue is composed of different cell types, including neurons and support cells called glial cells. Glial cells have an interesting trait—when compressed, they stiffen. Schwarz says this is opposite to the intuitive expectation that applying force to the many tiny filaments would make them buckle, making the cell more squishy. She hopes to figure out what explains the stiffness of glial cells, as well as the mechanics underlying why the brain is grooved in general.

Schwarz will employ computer modeling to investigate these complex biological questions in a more tractable way. By controlling physical influences on theoretical systems, she will be able to get down to the basics of how rigidity arises and is maintained in living systems, and how rigid structures respond to external pressures. This approach would enable her to systematically study the role of different forces that contribute to rigidity, such as friction, which would be impossible to avoid in a physical system.

This grant award follows Schwarz’s receipt of a 2007 NSF CAREER award, which recognized her exemplary research and teaching record. She has been a member of the physics department since 2005.

  • Author

Elizabeth Droge-Young

  • Recent
  • Confronting ‘Who We Are”
    Tuesday, January 19, 2021, By News Staff
  • Arts and Sciences Welcomes New Director of Forensics Kathleen Corrado
    Tuesday, January 19, 2021, By Dan Bernardi
  • University College Announces Online Degree in Computer Programming
    Tuesday, January 19, 2021, By Eileen Jevis
  • Stadium Testing Center Closed for Planned Enhancements Wednesday, Jan. 20
    Tuesday, January 19, 2021, By News Staff
  • Sound Beat: Access Audio Offering Children’s Audiobooks about Enslaved People by Cheryl Wills ’89
    Tuesday, January 19, 2021, By Cristina Hatem

More In STEM

Arts and Sciences Welcomes New Director of Forensics Kathleen Corrado

After 25 years working in the field of forensic science and over two decades of executive experience as a laboratory director, Kathleen Corrado has been named director of the Forensic and National Security Science Institute (FNSSI) in the College of…

Hehnly Lab Awarded $1.2M NIH Grant to Research Critical Tissue Formation

A key process during the development of an embryo is tissue morphogenesis, where the number of cells in an organism increase through cell division and tissues begins to take shape. Heidi Hehnly, assistant professor of biology, has been awarded a…

The Role of Digital Forensics and Tracking Down US Capitol Riot Criminals

With just under a week left before President-elect Joe Biden’s inauguration ceremony, investigators and law enforcement agencies across the country are working speedily to identify as many of the Jan. 6 U.S. Capitol riot offenders as they can. Knowing exactly…

A&S Researchers Awarded $2.1M Grant to Study Causes of Congenital Heart Defects

Congenital heart defects are the most common type of birth defect, affecting nearly 1 percent of births in the United States each year, according to the Centers for Disease Control and Prevention. Doctors have been unable to lower that number…

$1.5 Million NIH Grant Funds ALS-Linked Research

The human body is made up of trillions of cells. Within each cell are proteins which help to maintain the structure, function and regulation of the body’s tissues and organs. When cells are under stress, as in response to heat…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2021 Syracuse University News. All Rights Reserved.