Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Memory Is All in the Wrinkles. Or Is It?

Monday, October 26, 2015, By Elizabeth Droge-Young
Share
College of Arts and SciencesfacultyResearch and Creative
Conventional wisdom has long held that more wrinkles in the brain means better memory, but new research is starting to question that.

Conventional wisdom has long held that more wrinkles in the brain means better memory, but new research by Syracuse University’s Paul Gold and SUNY Upstate Medical University’s Huaiyu Hu is starting to question that.

When it comes to brains, wrinkly is good for the memory. Or so conventional wisdom holds. Certain human genetic conditions can lead to a smooth brain, without any of the normal grooves—something that tends to come with decreasing mental capacity. That many animals have naturally wrinkle-free brains but are still able to learn complex tasks suggests wrinkles aren’t all there is to intelligence.

Paul Gold

Paul Gold

“We don’t know if smooth brains necessarily mean retardation,” says Paul Gold, a biology professor in the  College of Arts and Sciences. An expert in aging, as well as learning, memory and plasticity, he says there are documented cases of people born with smooth brains with above-average IQs. These observations suggest that there’s more to the story than just smoothness.

Gold has been awarded a grant from the Research Foundation of State University of New York to investigate the way brain anatomy influences mental function at a fine scale. He will collaborate with Huaiyu Hu, associate professor of neuroscience and physiology at SUNY Upstate Medical University, to study the impact of neuron morphology on learning and memory in mice, which naturally have smooth brains.

Central to their project—and Hu’s own research—is a type of muscular dystrophy called dystroglycanopathy, which leads to smooth brains in humans. With this disorder, improperly formed structures on the outside of cells prevent the latter from making physical contact with other objects. Poor cell connections can lead to not only smooth brains, but also changes in the way neurons connect to one another, mental retardation and other phenomena.

Even though dystroglycanopathy causes both smooth brains and reduced mental abilities, Hu and Gold question whether or not overall brain structure leads to mental impairments. Using naturally smooth-brained mice, they intend to focus on the effect of neuron connections on mental abilities. “Not being able to make and break connections between neurons is the real issue,” Gold says, underscoring the study’s objective.

Gold and Hu bring considerable expertise in behavioral testing and brain anatomy, respectively, to the project, as they look for connections between neuron structure and learning and memory. They also will take advantage of mice missing a critical gene, resulting in dystroglycanopathy. Hu will compare the fine structure of neurons in gene-deficient mice to those that have received gene therapy to replace the missing genetic information. After neuron structure differences are established between the groups, Gold will test their learning and memory.

Testing for mental deficiencies in mice with dystroglycanopy is relatively new to Gold, who, along with Donna Korol, associate professor of biology, investigates factors such as stress, aging and neurological disease on memory. His and Korol’s research is aided by a team of postdoctoral researchers, graduate students and undergraduates (more than 20 of them), resulting in a lab that crackles with activity.

As for his latest collaboration, Gold is excited about working with Hu, and embarking on a new challenge. “It’s a really novel way to think about the world, and I appreciate that,” he says, regarding his study of dystroglycanopathy. “I also think it’s a way for both institutions to enhance their research programs.”

  • Author

Elizabeth Droge-Young

  • Recent
  • SCOTUS Win for Combat Veterans Backed by Syracuse Law Clinic
    Monday, June 23, 2025, By Vanessa Marquette
  • Syracuse Views Summer 2025
    Monday, June 23, 2025, By News Staff
  • Tiffany Xu Named Harry der Boghosian Fellow for 2025-26
    Friday, June 20, 2025, By Julie Sharkey
  • Registration Open for Esports Campus Takeover Hosted by University and Gen.G
    Thursday, June 19, 2025, By Matt Michael
  • 2 Whitman Students Earn Prestigious AWESOME Scholarship
    Tuesday, June 17, 2025, By News Staff

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.