Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Plants Cope with Climate Change at the Gene Level

Wednesday, October 14, 2015, By Elizabeth Droge-Young
Share
Climate ChangeCollege of Arts and Sciencesfacultyresearch

Climate change can influence everything from pine beetle outbreaks in the Rocky Mountains to rising sea levels in Papua New Guinea. In the face of a rapidly changing earth, plants and animals are forced to quickly deal with new challenges if they hope to survive. According to a recent paper by Jason Fridley, associate professor of biology in the College of Arts and Sciences, recently minted SU Ph.D. Catherine Ravenscroft and University of Liverpool professor Raj Whitlock, some species may be able to handle environmental changes better than others.

Jason Fridley works in the University's Climate Change Garden.

Jason Fridley works in the University’s Climate Change Garden.

Fridley explains that species have a couple of options to deal with stress associated with environmental change: they can pick up and move to more favorable areas, or they can stick it out and adapt to the new challenges. This ability to adapt to climate changes was the main focus of the researchers’ study

Ribwort plantain and sheep fescue, two plants common in the study site, show signs of being able to respond to induced climate challenges. “There is evidence of genetic differentiation with a long term climate treatment,” says Ravenscroft, explaining that genetic differences have built up between climate-treated versus untreated plants in the study site.

What’s more, the gene-level changes have happened remarkably fast. Because these grasses are perennial species, meaning they live and reproduce for multiple growing seasons, Fridley estimates there have only been around 10 generations of plants over the 15-year experiment. While that may sound like a lot of generations if you think back to your great-great-great-great-great-great-great-great-grandparent, genetic splits happen on an evolutionary timescale—think in terms of hundreds or thousands of years.

To identify how plants responded to environmental changes, the team looked for genetic differences in climate-treated versus untreated plants. Specifically, the researchers investigated random areas of the plant’s genomes to see how many of those locations differed in genetic makeup in the treated versus untreated plants.

“Do you have changes in genetic diversity with respect to treatment or do you have differentiation with respect to treatment?” says Ravenscroft, outlining the main questions of the study. “The answer in terms of these grasses is ‘yes’ and ‘yes’.”

Patterns of differentiation and the rapid genetic changes suggest that both species started with a pool of genetic variation. Standing genetic diversity offered the plant populations resilience to a rapidly changing world. This result illustrates that pre-existing genetic variation can benefit plants in light of imposed climate challenges. “It reinforces the idea that diversity supports resilience in the face of climate change,” Ravenscroft explains, but she is quick to point out that not all species may be so lucky.

The plants’ capacity to respond to challenges may point to their future persistence in the study’s ecosystem. “Eventually species are going to show up that are more drought adapted and push the system in a new direction, unless some species, like the plants used in the experiment, have drought-adapted physical traits,” Fridley explains, adding that this is a process that occurs across the globe in response to climate change.

This climate change research was conducted in the English countryside at a long-term ecological research site. More than 15 years ago, a group of British scientists set up the experiment to uncover the effects of climate change by artificially controlling temperature and water availability across many 3×3-foot plots of land. An international team has maintained the research area, located on a previous munitions storage site from World War II, since the experiment’s initiation.

Speaking to the unusually long length of the experimental site Fridley says, “there’s nothing else like it in the world.”

The original article was published in Global Change Biology and can be viewed here.

  • Author

Elizabeth Droge-Young

  • Recent
  • Graduate Students Bring Physics to Local Classrooms With Outreach Program
    Friday, May 27, 2022, By Dan Bernardi
  • COVID-19 Update: Effective Wednesday, June 1, Masking Level Returns to Yellow
    Friday, May 27, 2022, By News Staff
  • Preparing Students for a Life of Success
    Friday, May 27, 2022, By Caroline K. Reff
  • Alumni Draw on Their Military Experience in Their Roles as Teachers
    Thursday, May 26, 2022, By Martin Walls
  • Bringing ‘CSI’ Into the Classroom
    Thursday, May 26, 2022, By Dan Bernardi

More In STEM

Graduate Students Bring Physics to Local Classrooms With Outreach Program

“When am I ever going to use this in real life?” That is the oft-heard refrain from middle- and high-school science students, struggling through labs and formulas that feel as far removed from their day-to-day as, well, space travel. Sarthak…

Bringing ‘CSI’ Into the Classroom

Dusting for fingerprints, documenting blood stain patterns and measuring bullet trajectory—you might think this is a description of a recent episode from the popular television series “CSI.” While this may be true, these are also the daily lessons students are…

Matt Cufari Named as a 2022-23 Astronaut Scholar

Matt Cufari, a senior physics major in the College of Arts and Sciences (A&S), a computer science major in the College of Engineering and Computer Science, a Coronat Scholar and a member of the Renée Crown University Honors Program, has…

Dean Rajiv ‘Raj’ Dewan to Step Down as Dean of the School of Information Studies

Rajiv “Raj” Dewan, dean of the School of Information Studies, has announced he will conclude his deanship on June 30, 2022. Dewan plans to return to full-time faculty duties while continuing his research. David Seaman, dean of Syracuse University Libraries…

Biology and Earth and Environmental Sciences Departments Come Together on Diversity and Engagement Initiatives

In 1948, Professor James Hope Birnie became Syracuse University’s first African American faculty member in biology, teaching here until 1951. He was also one of its first biology faculty members to be supported by the National Institutes of Health (NIH)….

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2022 Syracuse University News. All Rights Reserved.