Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Physicist Scores Back-to-Back Articles in Top Journals

Friday, October 2, 2015, By Rob Enslin
Share
College of Arts and Sciencesfacultyresearch
lisa_manning3

Lisa Manning

A physicist in the College of Arts and Sciences has published back-to-back articles in two of the field’s most prestigious journals.

Associate Professor M. Lisa Manning is the co-author of recent articles in Nature Physics and Nature Materials. Both pieces focus on cell motion and cell rearrangements inside dense biological tissues—one of her areas of teaching and research expertise.

Manning’s accomplishments cap off a busy summer, which saw her receipt of two grants awards: one for $1.02 million from the National Institutes of Health and another for $168,750 from both Gordon and Betty Moore Foundation and the Research Corporation for Science Advancement.

“Professor Manning is one of our rising stars in the classroom and the laboratory,” says A. Alan Middleton, professor and chair of physics. “She exemplifies the excellence of our Condensed Matter Group by applying sophisticated theoretical methods and image analysis to experiments on cells, both migrating and in tissues. Her contributions are pushing the boundaries of what we know about biological materials.”

Titled “A Density-Independent Rigidity Transition in Biological Tissues,” Manning’s article in Nature Physics establishes a new theoretical and computational framework for how cells move in dense tissues. She co-authored the article with Dapeng Bi, a former postdoctoral researcher at Syracuse who is now a Postdoctoral Fellow at The Rockefeller University; Jennifer Schwarz, assistant professor of physics at Syracuse; and Jorge Lopez G’14, assistant professor of physics at the University of Ibagué in Colombia, South America.

“Cell migration is important in many biological processes, including embryonic development, cancer metastasis, and wound healing. In these tissues, a cell’s motion is often constrained by its neighbors, leading to so-called glassy dynamics,” Manning says.  “Sometimes, cells become so constrained that the entire tissue transitions from fluid-like behavior, where cells easily migrate, to solid-like behavior, where they can’t move at all. Our theory explains, for the first time, how such a transition is possible in dense biological tissues.

dapeng_bi1

Dapeng Bi

Bi, who spearheaded the study, says the group noticed how small changes in single cells, such as the number of adhesion molecules they expressed, could transform tissue from a solid-like jammed state to a fluid-like unjammed one. “Experts in the field had assumed that more adhesion led to a more solid-like state, but our model has predicted otherwise,” he says.

The model also states that an easy-to-measure number, quantifying cell shape, completely specifies the mechanical state of a tissue. “With no fit parameters, we predict that, if a tissue is solid-like, the cell-shape index should be 3.813; if the tissue is fluid-like, the number should be much larger than 3.813,” Manning says. “That’s a very strong prediction, and no one has ever thought to look at it before.”

This prediction was put to the test in the Nature Materials article, titled “Unjamming and Cell Shape in the Asthmatic Airway Epithelium.” Co-authored by Manning, Bi and a team of researchers at the Harvard T.H. Chan School of Public Health, it focuses on cells from the lungs of human subjects, some of whom have asthma.

The team found that epithelial cells from the lungs of non-asthma patients quickly became solid-like, or jammed, as expected. “In people with asthma, the cells, however, scrambled around like there was a fire drill going on, and the tissue remained fluid-like for a much longer time,” Manning says. “We also found that, in the jammed tissues, the cell-shape index was precisely 3.813, while it was significantly larger in the unjammed tissues, as predicted by our theory. It was a spectacular confirmation.”

Now that Manning understands the impact of jamming transitions on disease, she says the next step is to measure and control these transitions in various medical conditions, such as asthma, cancer and wound healing. “Our work suggests that the collective behavior of large groups of cells is easier to measure and is more important for disease than previously imagined,” she says. “That means it’s a very exciting time to be working in this field.”

  • Author

Rob Enslin

  • Recent
  • Drama Department to Virtually Present New Theatrical Work Inspired by University’s 150th Anniversary
    Saturday, January 23, 2021, By Erica Blust
  • Professor Rahman Awarded Google Grant to Engage Underrepresented Students in Computing Research
    Saturday, January 23, 2021, By Alex Dunbar
  • Special Collections Research Center Launches Latin American 45s Digital Collection
    Saturday, January 23, 2021, By Cristina Hatem
  • VPA Faculty to Present World Premieres at Society for New Music Concert Jan. 31
    Saturday, January 23, 2021, By News Staff
  • ‘Democracy on Trial: Can We Save It?’
    Friday, January 22, 2021, By News Staff

More In STEM

Professor Rahman Awarded Google Grant to Engage Underrepresented Students in Computing Research

Electrical engineering and computer science (EECS) Professor Farzana Rahman received a 2020 Google exploreCSR award to fund the development of an undergraduate student engagement workshop program, Research Exposure in Socially Relevant Computing (RESORC). The RESORC program will provide research opportunities…

Arts and Sciences Welcomes New Director of Forensics Kathleen Corrado

After 25 years working in the field of forensic science and over two decades of executive experience as a laboratory director, Kathleen Corrado has been named director of the Forensic and National Security Science Institute (FNSSI) in the College of…

Hehnly Lab Awarded $1.2M NIH Grant to Research Critical Tissue Formation

A key process during the development of an embryo is tissue morphogenesis, where the number of cells in an organism increase through cell division and tissues begins to take shape. Heidi Hehnly, assistant professor of biology, has been awarded a…

The Role of Digital Forensics and Tracking Down US Capitol Riot Criminals

With just under a week left before President-elect Joe Biden’s inauguration ceremony, investigators and law enforcement agencies across the country are working speedily to identify as many of the Jan. 6 U.S. Capitol riot offenders as they can. Knowing exactly…

A&S Researchers Awarded $2.1M Grant to Study Causes of Congenital Heart Defects

Congenital heart defects are the most common type of birth defect, affecting nearly 1 percent of births in the United States each year, according to the Centers for Disease Control and Prevention. Doctors have been unable to lower that number…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2021 Syracuse University News. All Rights Reserved.