Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Physicist Scores Back-to-Back Articles in Top Journals

Friday, October 2, 2015, By Rob Enslin
Share
College of Arts and SciencesfacultyResearch and Creative
lisa_manning3

Lisa Manning

A physicist in the College of Arts and Sciences has published back-to-back articles in two of the field’s most prestigious journals.

Associate Professor M. Lisa Manning is the co-author of recent articles in Nature Physics and Nature Materials. Both pieces focus on cell motion and cell rearrangements inside dense biological tissues—one of her areas of teaching and research expertise.

Manning’s accomplishments cap off a busy summer, which saw her receipt of two grants awards: one for $1.02 million from the National Institutes of Health and another for $168,750 from both Gordon and Betty Moore Foundation and the Research Corporation for Science Advancement.

“Professor Manning is one of our rising stars in the classroom and the laboratory,” says A. Alan Middleton, professor and chair of physics. “She exemplifies the excellence of our Condensed Matter Group by applying sophisticated theoretical methods and image analysis to experiments on cells, both migrating and in tissues. Her contributions are pushing the boundaries of what we know about biological materials.”

Titled “A Density-Independent Rigidity Transition in Biological Tissues,” Manning’s article in Nature Physics establishes a new theoretical and computational framework for how cells move in dense tissues. She co-authored the article with Dapeng Bi, a former postdoctoral researcher at Syracuse who is now a Postdoctoral Fellow at The Rockefeller University; Jennifer Schwarz, assistant professor of physics at Syracuse; and Jorge Lopez G’14, assistant professor of physics at the University of Ibagué in Colombia, South America.

“Cell migration is important in many biological processes, including embryonic development, cancer metastasis, and wound healing. In these tissues, a cell’s motion is often constrained by its neighbors, leading to so-called glassy dynamics,” Manning says.  “Sometimes, cells become so constrained that the entire tissue transitions from fluid-like behavior, where cells easily migrate, to solid-like behavior, where they can’t move at all. Our theory explains, for the first time, how such a transition is possible in dense biological tissues.

dapeng_bi1

Dapeng Bi

Bi, who spearheaded the study, says the group noticed how small changes in single cells, such as the number of adhesion molecules they expressed, could transform tissue from a solid-like jammed state to a fluid-like unjammed one. “Experts in the field had assumed that more adhesion led to a more solid-like state, but our model has predicted otherwise,” he says.

The model also states that an easy-to-measure number, quantifying cell shape, completely specifies the mechanical state of a tissue. “With no fit parameters, we predict that, if a tissue is solid-like, the cell-shape index should be 3.813; if the tissue is fluid-like, the number should be much larger than 3.813,” Manning says. “That’s a very strong prediction, and no one has ever thought to look at it before.”

This prediction was put to the test in the Nature Materials article, titled “Unjamming and Cell Shape in the Asthmatic Airway Epithelium.” Co-authored by Manning, Bi and a team of researchers at the Harvard T.H. Chan School of Public Health, it focuses on cells from the lungs of human subjects, some of whom have asthma.

The team found that epithelial cells from the lungs of non-asthma patients quickly became solid-like, or jammed, as expected. “In people with asthma, the cells, however, scrambled around like there was a fire drill going on, and the tissue remained fluid-like for a much longer time,” Manning says. “We also found that, in the jammed tissues, the cell-shape index was precisely 3.813, while it was significantly larger in the unjammed tissues, as predicted by our theory. It was a spectacular confirmation.”

Now that Manning understands the impact of jamming transitions on disease, she says the next step is to measure and control these transitions in various medical conditions, such as asthma, cancer and wound healing. “Our work suggests that the collective behavior of large groups of cells is easier to measure and is more important for disease than previously imagined,” she says. “That means it’s a very exciting time to be working in this field.”

  • Author

Rob Enslin

  • Recent
  • University Musicians, West Point Band to Perform Together This Weekend As Part of Events Around Military Appreciation Day
    Friday, September 22, 2023, By Christine Weber
  • Turning Young Enthusiasts Into Scientific Researchers
    Friday, September 22, 2023, By Wendy S. Loughlin
  • Languages Unlock Opportunities for English for Lawyers Alumna
    Thursday, September 21, 2023, By Hope Alvarez
  • Fall 2023 Career Week: Helping Students Achieve Professional Goals
    Thursday, September 21, 2023, By Gabrielle Lake
  • A Commitment to Arts and Sciences Excellence
    Thursday, September 21, 2023, By Dan Bernardi

More In STEM

Turning Young Enthusiasts Into Scientific Researchers

Miguel Guzman ’24, a native of Lima, Peru, is a senior biotechnology major in the College of Arts and Sciences with an entrepreneurship and emerging enterprises minor in the Whitman School of Management. His research centers on developing bio-enabled protein…

Center for Sustainable Community Solutions and Environmental Finance Center Announces New Director

The College of Engineering and Computer Science is pleased to announce the transition of Melissa Young into a new role as director of the Center for Sustainable Community Solutions-Environmental Finance Center (CSCS-EFC) at Syracuse University. CSCS-EFC is housed within the…

Civil and Environmental Engineering Professor Attends UN Session on Reducing Plastic Pollution

Civil and Environmental Engineering Professor Svetoslava Todorova attended the second session of the United Nations (UN) Intergovernmental Negotiations Committee on Plastics this summer in Paris, France. Todorova was invited as an academic expert based on her research on the environment,…

Experts Say Federal Agency or Global Organization Should Govern AI, New Survey Co-sponsored by Two University Institutes Finds

A new survey co-sponsored by two Syracuse University institutes finds that a majority of computer science experts at top U.S research universities want to see the creation of a new federal agency or global organization to govern artificial intelligence (AI)….

Q&A With School of Information Studies Dean Andrew Sears: Seeing Countless Opportunities in the Ever-Changing Tech World

In the rapidly changing world of technology, School of Information Studies Dean Andrew Sears knows it’s hard to predict how technology and the iSchool will evolve if you look too far into the future. But, he knows if you pay…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2023 Syracuse University News. All Rights Reserved.