Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Physicist Scores Back-to-Back Articles in Top Journals

Friday, October 2, 2015, By Rob Enslin
Share
College of Arts and SciencesfacultyResearch and Creative
lisa_manning3

Lisa Manning

A physicist in the College of Arts and Sciences has published back-to-back articles in two of the field’s most prestigious journals.

Associate Professor M. Lisa Manning is the co-author of recent articles in Nature Physics and Nature Materials. Both pieces focus on cell motion and cell rearrangements inside dense biological tissues—one of her areas of teaching and research expertise.

Manning’s accomplishments cap off a busy summer, which saw her receipt of two grants awards: one for $1.02 million from the National Institutes of Health and another for $168,750 from both Gordon and Betty Moore Foundation and the Research Corporation for Science Advancement.

“Professor Manning is one of our rising stars in the classroom and the laboratory,” says A. Alan Middleton, professor and chair of physics. “She exemplifies the excellence of our Condensed Matter Group by applying sophisticated theoretical methods and image analysis to experiments on cells, both migrating and in tissues. Her contributions are pushing the boundaries of what we know about biological materials.”

Titled “A Density-Independent Rigidity Transition in Biological Tissues,” Manning’s article in Nature Physics establishes a new theoretical and computational framework for how cells move in dense tissues. She co-authored the article with Dapeng Bi, a former postdoctoral researcher at Syracuse who is now a Postdoctoral Fellow at The Rockefeller University; Jennifer Schwarz, assistant professor of physics at Syracuse; and Jorge Lopez G’14, assistant professor of physics at the University of Ibagué in Colombia, South America.

“Cell migration is important in many biological processes, including embryonic development, cancer metastasis, and wound healing. In these tissues, a cell’s motion is often constrained by its neighbors, leading to so-called glassy dynamics,” Manning says.  “Sometimes, cells become so constrained that the entire tissue transitions from fluid-like behavior, where cells easily migrate, to solid-like behavior, where they can’t move at all. Our theory explains, for the first time, how such a transition is possible in dense biological tissues.

dapeng_bi1

Dapeng Bi

Bi, who spearheaded the study, says the group noticed how small changes in single cells, such as the number of adhesion molecules they expressed, could transform tissue from a solid-like jammed state to a fluid-like unjammed one. “Experts in the field had assumed that more adhesion led to a more solid-like state, but our model has predicted otherwise,” he says.

The model also states that an easy-to-measure number, quantifying cell shape, completely specifies the mechanical state of a tissue. “With no fit parameters, we predict that, if a tissue is solid-like, the cell-shape index should be 3.813; if the tissue is fluid-like, the number should be much larger than 3.813,” Manning says. “That’s a very strong prediction, and no one has ever thought to look at it before.”

This prediction was put to the test in the Nature Materials article, titled “Unjamming and Cell Shape in the Asthmatic Airway Epithelium.” Co-authored by Manning, Bi and a team of researchers at the Harvard T.H. Chan School of Public Health, it focuses on cells from the lungs of human subjects, some of whom have asthma.

The team found that epithelial cells from the lungs of non-asthma patients quickly became solid-like, or jammed, as expected. “In people with asthma, the cells, however, scrambled around like there was a fire drill going on, and the tissue remained fluid-like for a much longer time,” Manning says. “We also found that, in the jammed tissues, the cell-shape index was precisely 3.813, while it was significantly larger in the unjammed tissues, as predicted by our theory. It was a spectacular confirmation.”

Now that Manning understands the impact of jamming transitions on disease, she says the next step is to measure and control these transitions in various medical conditions, such as asthma, cancer and wound healing. “Our work suggests that the collective behavior of large groups of cells is easier to measure and is more important for disease than previously imagined,” she says. “That means it’s a very exciting time to be working in this field.”

  • Author

Rob Enslin

  • Recent
  • Rabbi Natan Levy Appointed Campus Rabbi for Syracuse Hillel and Jewish Chaplain at Hendricks Chapel
    Tuesday, July 22, 2025, By Dara Harper
  • Imam Amir Durić Appointed Assistant Dean for Religious and Spiritual Life at Hendricks Chapel
    Tuesday, July 22, 2025, By Dara Harper
  • College of Law’s Veterans Legal Clinic Receives Justice for Heroes Grant
    Tuesday, July 22, 2025, By Robert Conrad
  • NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered
    Wednesday, July 16, 2025, By Cristina Hatem
  • Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering
    Wednesday, July 16, 2025, By Emma Ertinger

More In STEM

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Star Scholar: Julia Fancher Earns Second Astronaut Scholarship for Stellar Research

Julia Fancher, a rising senior majoring in physics and mathematics in the College of Arts and Sciences (A&S), a logic minor in A&S and a member of the Renée Crown University Honors Program, has been renewed as an Astronaut Scholar for…

Traugott Professor of Mechanical and Aerospace Engineering Bing Dong to Present at Prestigious AI Conference

Professor Bing Dong was recently selected to lead a workshop on artificial intelligence (AI) at NeurIPS, the Conference and Workshop on Neural Information Processing Systems. Founded in 1987, NeurIPS is one of the most prestigious annual conferences dedicated to machine learning and AI research. Dong’s workshop…

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching at CERN’s Large Hadron Collider. The Big Bang created equal amounts of matter and antimatter, but now nearly everything—solid, liquid, gas or plasma—is…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.