Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Syracuse Physicists Advance Search for Gravitational Waves

Friday, September 18, 2015, By Rob Enslin
Share
College of Arts and SciencesLIGOResearch and Creative
LIGO Hanford

LIGO Hanford

Physicists in the College of Arts and Sciences are playing a key role in the first observation run of the Advanced Laser Interferometer Gravitational-Wave (LIGO) Detector, after a meticulous five-year rebuild.

Detectors at LIGO Hanford in Washington state and LIGO Livingston in Louisiana have begun a new and improved search for gravitational waves, which are ripples in space-time, generated by some of the Universe’s most cataclysmic events, such as colliding black holes and exploding stars. For the next three months, scientists at both sites will work around the clock, checking the quality of data and keeping the detectors online to collect as much data as possible.

Peter Saulson

Peter Saulson

Among them are members of the University’s Gravitational Wave Group—including Peter Saulson, the Martin A. Pomerantz ’37 Professor of Physics. “The past few months have marked the culmination of years of effort to commission Advanced LIGO,” he says. “We’ve been carefully tuning the instruments and conducting practice runs to ensure everything works well.”

Saulson, along with Associate Professor Duncan Brown and Assistant Professor Stefan Ballmer, is part of the LIGO Scientific Collaboration (LSC), comprising hundreds of scientists from around the globe, dedicated to making the first direct detection of gravitational waves.

Ballmer, an expert in gravitational wave astronomy, helped upgrade Hanford’s detector. “Every aspect of these machines must be finely tuned, for us to detect these waves,” he says. “On top of that, both observatories are more than 1,800 miles apart. They must work flawlessly to gain the necessary detection confidence.”

Each LIGO observatory contains an L-shaped interferometer with two several-mile-long arms. A powerful laser beam, originating at the elbow, shoots down each arm, before being reflected back to its source by mirrors at both ends. In the process, light from one arm interferes with that of the other arm.

Stefan Ballmer

Stefan Ballmer, left

Ballmer says that a passing gravitational wave stretches one arm of the detector while compressing the other, causing the beams to shift in phase with another. “When this happens, light reaches the detector output. LIGO is able to detect these minute phase differences, which are recorded and then used to help determine the origin of the gravitational wave,” he adds.

Brown is optimistic about this new phase of the collaboration, aptly called “Advanced LIGO.” He says the detectors are currently three times more sensitive than the first-generation ones from Initial LIGO, which operated from 2008 to 2010, but did not detect any gravitational wave sources.

“Ultimately, Advanced LIGO will reach a sensitivity that’s 10 times better than Initial LIGO,” says Brown, who looks for signals from pairs of neutron stars and black holes orbiting each other. “At this sensitivity, we expect to see lots of signals every year. Detecting them will enable us to explore black holes in distant galaxies.”
Duncan Brown, center

Duncan Brown, center

Co-founded by scientists from Caltech and MIT in 1992, LIGO is funded by the National Science Foundation, with support from Australia, Germany and the United Kingdom. Central to LIGO’s international efforts is the LSC, whose spokesperson is Gabriela González G’95, professor of physics and astronomy at Louisiana State University and a graduate of Syracuse’s Ph.D. program.

By combining precision optical instruments with two of the world’s largest vacuum systems, LIGO seeks to redefine the possibilities in astrophysics through the direct detection of gravitational waves.

“Advanced LIGO has the potential to revolutionize our understanding of the Universe,” Brown says. “For instance, scientists don’t know where all the gold and platinum in the Universe is from. They could have been made when two neutron stars collided together at a third of the speed of light. Our observations will help answer these types of fundamental questions.”

  • Author
  • Faculty Experts

Rob Enslin

  • Peter R. Saulson

  • Stefan Ballmer

  • Duncan Brown

  • Recent
  • Syracuse University Libraries’ Information Literacy Scholars Produce Information Literacy Collab Journal
    Thursday, May 29, 2025, By Cristina Hatem
  • Trip to Atlanta Gives Falk Students ‘Real-World’ Opportunities and Connections
    Thursday, May 29, 2025, By Matt Michael
  • Syracuse Pride on Display: Limited-Edition Poster Supports Future Generations
    Thursday, May 29, 2025, By News Staff
  • Maxwell Advisory Board Welcomes New Leadership
    Thursday, May 29, 2025, By Jessica Youngman
  • Syracuse Stage Hosts Inaugural Julie Lutz New Play Festival
    Wednesday, May 28, 2025, By News Staff

More In STEM

University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy

This month at the All Island Bioeconomy Summit held in Co. Meath, Ireland, it was announced that BiOrbic, Research Ireland Centre for Bioeconomy, comprising 12 leading Irish research universities in Ireland, signed a joint memorandum of understanding (MOU) with the Dynamic Sustainability…

Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science has named Bing Dong as the Traugott Professor of Mechanical and Aerospace Engineering. This endowed professorship is made possible by a 1998 gift from the late Fritz Traugott H’98 and his wife, Frances….

Physics Professor Honored for Efforts to Improve Learning, Retention

The Department of Physics in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime ’25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.