Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

A Hunger for Knowledge

Thursday, September 17, 2015, By Elizabeth Droge-Young
Share
College of Arts and Sciencesfacultyresearch

A chemist in the College of Arts and Sciences has been awarded a major grant extension, enabling him to continue studying a rare genetic disorder known as Prader-Willi Syndrome (PWS).

JamesHougland

James Hougland

James Hougland, assistant professor of chemistry, has received an additional $76,000 from the Foundation for Prader-Willi Research to build on his previous study of insatiable hunger associated with PWS. He plans to use the extension to investigate biochemical signaling in hunger, in hopes of finding a treatment for PWS.

Hougland says that people afflicted with PWS know all too well the intense desire to eat, independent of how much food they consume. “You know what it’s like to have an itch in the middle of your back that you can’t scratch?” he asks. “Imagine that’s hunger. Even if they eat enough, PWS patients still feel hungry.”

Insatiable hunger in PWS is of particular concern to Hougland because it can lead to morbid obesity. In fact, cardiovascular conditions resulting from obesity have been a source of PWS-associated mortality.

The Hougland Lab focuses on the biochemical pathway underlying hunger signaling. Much of their work involves the “hunger hormone” ghrelin, which is produced by cells in the gastrointestinal tract. Ghrelin then enters the bloodstream and is transported to the hypothalamus in the brain, where it signals hunger. Only when one eats do ghrelin levels drop, thus turning off the impulse to consume more.

With PWS, insatiable hunger results when ghrelin signaling has gone awry: levels remain high and don’t cycle down after eating. One way to tackle this problem, Hougland says, is to stop the manufacture of the mature ghrelin protein.

This is done with an enzyme called ghrelin O-acyltransferase (GOAT). Before ghrelin can tell the brain it is hungry, GOAT tacks on a fatty acid chain to the signaling molecule. Hougland is using his grant award, as well as its extension, to figure out how to inhibit GOAT from adding this fatty acid.

“Because PWS is a genetic syndrome, you can’t cure it, but you can certainly treat the symptoms,” he says. “Even if PWS patients are overproducing ghrelin, we can try to block the enzyme that activates ghrelin. This will cause them to pump out an inactive form of it to blunt the hunger signal.”

Kayleigh McGovern

Kayleigh McGovern

Under the original grant, the Hougland Lab identified a number of molecules that block GOAT from activating ghrelin. Kayleigh McGovern, a Ph.D. candidate in chemistry, recalls screening a library of different molecules for their potential to block GOAT activity. “I was very excited to identify a new inhibitor out of this library screen and to start figuring out which components of the molecule are important for inhibition,” she says.

The PWS grant extension enables the Hougland Lab, along with collaborators at Purdue University, to take the information they have learned about molecules that stop GOAT’s action to create synthetic blockers that work even better. “We’ve moved beyond identifying inhibitors, and are now working on optimizing and creating the next generation of them,” Hougland says.

McGovern looks forward to investigating how GOAT performs the fatty acid transfer to ghrelin under the grant extension. “If we can figure this out, we’ll be better equipped to design inhibitors based on its mechanism,” she says.

McGovern is part of the team studying GOAT signaling, which has included a total of four graduate students and seven undergraduates from the Hougland Lab. “We’re one of the leading groups studying GOAT and ghrelin biochemistry,” Hougland says, adding that the team has built “considerable momentum” with their work. “The grant extension will keep pushing us forward, developing research tools and enhancing the discoveries we’ve made.”

  • Author

Elizabeth Droge-Young

  • Recent
  • Dining Centers to Resume In-Person Dining Monday, April 19, at 11 a.m.
    Sunday, April 18, 2021, By News Staff
  • Libraries Receive Two Access and Digitization Grants
    Sunday, April 18, 2021, By Cristina Hatem
  • Pre-Registration Open for On-Campus Vaccine Clinic
    Friday, April 16, 2021, By News Staff
  • Commencement 2021 Update
    Friday, April 16, 2021, By News Staff
  • Activities for the Weekend of April 15-19 | Submit Proof of Vaccination
    Thursday, April 15, 2021, By News Staff

More In STEM

Bioengineering Ph.D. Student Receives National Recognition for Breakthrough Molecular Computational Tool

Nandhini Rajagopal’s accomplishments are massive even though her research focuses on small molecules. As part of biomedical and chemical engineering Professor Shikha Nangia’s research group, the Ph.D. student has focused her work on minute interactions between protein molecules in the…

New Study From Department of Biology Highlights Ways to Support Students in Virtual Learning Environments

The mass migration to virtual learning that resulted from the COVID-19 pandemic led to a profound change in student learning. While it presented many challenges, it also created opportunities for documenting responses. Two researchers from the Department of Biology in…

Research Computing: A Decade of Discovery on Campus

Do you need more computing power to move your work forward? Since 2011, the Research Computing team within Information Technology Services (ITS) has helped faculty and staff tackle computational challenges beyond the capabilities of a normal desktop or laptop computer. Each…

Engineering Professor Shobha Bhatia Receives 2021 Judith Greenberg Seinfeld Scholar Award

Civil and Environmental Engineering Professor Shobha Bhatia has been honored by Chancellor Kent Syverud with a 2021 Judith Greenberg Seinfeld Scholar award. The award recognizes exceptional creativity and a passion for excellence. It provides $10,000 for Bhatia to undertake an…

Using Syracuse Lava to Understand Metal Worlds

In August 2022, NASA will embark on a space mission to 16 Psyche, a 140-mile diameter giant metal asteroid situated in the asteroid belt between Mars and Jupiter. NASA says it will be the first mission to investigate a planetary…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2021 Syracuse University News. All Rights Reserved.