Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Mathematicians Sweep NSF Grant Awards

Tuesday, September 8, 2015, By Rob Enslin
Share
College of Arts and SciencesResearch and Creative

Three mathematicians in the College of Arts and Sciences have been awarded major grants from the National Science Foundation (NSF), totaling more than $518,400. Each grant is for a three-year period.

Professor Lixin Shen has received a collaborative research grant for $183,400 to study image and signal processing; Professor Loredana Lanzani, $180,000 to explore harmonic analysis and partial differential equations; and Professor Graham Leuschke, $155,000 to investigate representation theory and non-commutative algebraic geometry.

“I am extremely proud of these professors, who embody our department’s commitment to research excellence,” says Uday Banerjee, professor and chair of mathematics. “Their cutting-edge work as teachers, scholars and administrators elevates the college, while raising the research profile of the University.”

Lixin Shen

Lixin Shen

Shen’s research focuses on algorithms for optimization problems that arise from a variety of applications, including parallel magnetic resonance imaging in medical imaging processing, as well as facial and fingerprint recognition in security identification systems. Such image/signal problems of practical importance are often modeled as large-scale optimization problems; therefore, he says it is essential to develop efficient computational algorithms to solve them.

An algorithm is a sequence of instructions, used to show how to perform a task.

“Image/signal processing problems of practical importance, such as incomplete data recovery, compressive sensing and matrix completion usually possess hierarchical structures or are represented in a multiscale analysis,” Shen says. “Multiscale analysis, however, is mainly used to sparsify [to scatter or disperse] the underlying image/signal in formulating the optimization problem, but it has not been fully exploited in the development of efficient algorithms. … I will make systematic use of the hierarchical structure in optimization problems of interest to solve them in an accurate and computationally efficient way.”

Loredana Lanzani

Loredana Lanzani

Like Shen, Lanzani is interested in harmonic analysis, but she also is an expert in partial differential equations and complex analysis. Her grant project deals with the study of so-called integral formulas in complex and harmonic analysis. These formulas are often used to recover information in large data sets that are difficult to reach

“For example, integral formulas may be used to determine the internal temperature of something, such as a tree, without poking holes in it,” she says. “After measuring the temperature at a surface level [e.g., the tree’s bark], one can use an integral formula to plot the value of the internal temperature.”

Lanzani says these formulas permeate pure and applied science, and help shed light on the study of heat transfer and celestial mechanics.

Graham Leuschke

Graham Leuschke

Leuschke, who is also associate chair for graduate affairs, works in commutative ring theory, which explains algebraic systems where addition, subtraction and multiplication are defined. Since every commutative ring has a corresponding geometric object, known as an algebraic variety, his work uses aspects of algebraic geometry, commutative algebra and representation theory. Combined with noncommutative algebra, this allows exploration of a new field called “non-commutative algebraic geometry.”

“I want to make sense of the geometric content of noncommutative rings and their representations,” says Leuschke, adding that his project will focus on various rings, categories and other abstract structures. “This kind of data is useful to mathematical physicists who work at the quantum level.”

 

 

  • Author

Rob Enslin

  • Recent
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin
  • Lab THRIVE: Advancing Student Mental Health and Resilience
    Thursday, June 12, 2025, By News Staff
  • 7 New Representatives Added to the Board of Trustees
    Wednesday, June 11, 2025, By News Staff
  • Whitman Honors Outstanding Alumni and Friends at 2025 Awards and Appreciation Event
    Tuesday, June 10, 2025, By News Staff

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.