Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Physicist Lands NIH Grant Award to Study Tissue, Organ Formation

Wednesday, September 2, 2015, By Rob Enslin
Share
College of Arts and SciencesResearch and Creative

A physicist in the College of Arts and Sciences has been awarded a major grant from the National Institutes of Health (NIH) to develop theoretical models of tissue and organ formation.

M. Lisa Manning

M. Lisa Manning

M. Lisa Manning, associate professor of physics, is using a $1.02 million NIH grant award to support her research project “Quantitative Modeling of Cell Shape Changes During Organogenesis.” She is collaborating with Jeff Amack, associate professor of cell and developmental biology at SUNY Upstate Medical University.

The accomplishment comes on the heels of Manning’s receipt of a $168,750 grant award from the Gordon and Betty Moore Foundation and the Research Corp. for Science Advancement to explore untested ideas in physical cell biology.

“Professor Manning brings exceptional energy and depth to her work,” says A. Alan Middleton, professor and chair of physics. “She exemplifies the excellence of both our Condensed Matter Group and the Department of Physics by applying sophisticated theoretical methods and image analysis to experiments on cells, both migrating and in tissues.”

Manning’s NIH award supports her ongoing study of how cell shapes and mechanical interactions influence patterning during embryonic development. In this project, her group will develop a mechanical model for tissues, with input and feedback from experiments performed in Amack’s lab, enabling them to infer the interplay between cell signaling and forces controlling organ development (aka organogenesis). Both research groups will then quantitatively test the model predictions using state-of-the-art molecular biology and image analysis techniques.

Much of their work involves Kupffer’s vesicle (KV), a ciliated organ in a zebrafish embryo that controls left-right patterning.

Zebrafish embryo

Zebrafish embryo

“Very little is known about the mechanical forces and tensions that shape this important organ, which is similar in all vertebrates, including humans,” Manning says. “Our new, dynamic model, in combination with experiments from Jeff’s lab, should allow us to better understand the processes that lead to congenital disease.”

One of Manning’s goals is to test the hypothesis that cell-shape changes needed for KV organogenesis are due to specific mechanical forces inside KV cells, as well as collective forces and signals generated by cells surrounding KV.

“Direct results of this work will include a description of the mechanical and biochemical pathways that lead to KV tissue remodeling and organ function, an understanding of how different perturbations disrupt these pathways, and a new set of mathematical models for tissue dynamics,” Manning adds.

  • Author

Rob Enslin

  • Recent
  • Student Veteran Anthony Ruscitto Honored as a Tillman Scholar
    Friday, July 18, 2025, By John Boccacino
  • Bandier Students Explore Latin America’s Music Industry
    Thursday, July 17, 2025, By Keith Kobland
  • Architecture Students’ Project Selected for Royal Academy Exhibition
    Thursday, July 17, 2025, By Julie Sharkey
  • NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered
    Wednesday, July 16, 2025, By Cristina Hatem
  • Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering
    Wednesday, July 16, 2025, By Emma Ertinger

More In STEM

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Star Scholar: Julia Fancher Earns Second Astronaut Scholarship for Stellar Research

Julia Fancher, a rising senior majoring in physics and mathematics in the College of Arts and Sciences (A&S), a logic minor in A&S and a member of the Renée Crown University Honors Program, has been renewed as an Astronaut Scholar for…

Traugott Professor of Mechanical and Aerospace Engineering Bing Dong to Present at Prestigious AI Conference

Professor Bing Dong was recently selected to lead a workshop on artificial intelligence (AI) at NeurIPS, the Conference and Workshop on Neural Information Processing Systems. Founded in 1987, NeurIPS is one of the most prestigious annual conferences dedicated to machine learning and AI research. Dong’s workshop…

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching at CERN’s Large Hadron Collider. The Big Bang created equal amounts of matter and antimatter, but now nearly everything—solid, liquid, gas or plasma—is…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.