Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Capturing Carbon through Cleaner Combustion

Tuesday, August 4, 2015, By Matt Wheeler
Share
College of Engineering and Computer Scienceresearch

When it comes to releasing carbon dioxide into the atmosphere, the combustion of fossil fuels is far and away the biggest offender. In fact, the Department of Energy estimates that the process creates approximately 30 billion tons of CO2 every year—approximately 40 percent of all carbon emissions.

The burning of fossil fuels remains our primary source of energy, so researchers are trying to make the process cleaner.

The burning of fossil fuels remains our primary source of energy, so researchers are trying to make the process cleaner.

Given the current limitations on clean, renewable energy technology, such as solar power, and its relatively low implementation, the burning of fossil fuels remains our primary source of energy. If we can’t go without it for the immediate future, we need to do what we can to make the process cleaner. Researchers in the College of Engineering and Computer Science are contributing to the cause.

In Associate Professor of Mechanical and Aerospace Engineering Jeongmin Ahn’s Combustion & Energy Research (COMER) Laboratory, graduate student Ryan Falkenstein-Smith and his fellow researchers are developing a material to facilitate the capture of carbon dioxide at fossil fuel-burning power plants before it can be released into the atmosphere.

In traditional fossil fuel combustion, a chemical reaction takes place between fuel (oil, coal, or natural gas) and air (made up primarily of nitrogen and oxygen). This produces heat, light and useful energy. Molecularly, what’s left is nitrogen, carbon dioxide and water vapor. The material Falkenstein-Smith is developing uses a novel technique to remove nitrogen from the equation. By doing this, the combustion process requires less energy and is more efficient.

Typically, removing nitrogen from air requires the use of an air separation unit. These tend to be energy-hungry devices—the amount of energy they eat up counters any energy savings gained by burning pure oxygen. In the COMER lab, researchers are trying to overcome this obstacle. Their material is a fabricated ceramic that acts as an ionic conductor. The material is molded into hollow fibers. Using a simple chemical gradient, it is able to move oxygen ions through its membrane, while blocking the nitrogen from the combustion process.

The oxygen is fed through the hollow fibers along with the fuel. They ignite and after combustion, carbon dioxide and water vapor are left, which can be frozen and buried, or even put to use, sometimes in something as common as carbonating soda.

There is increasing pressure for industry to reduce carbon dioxide emissions from combustion processes. The fabrication, characterization and experimentation of this material is just one piece of solving that large puzzle, but eventually, it could have a big impact. Falkenstein-Smith is eager to see ideas like his implemented in the near future.

He says, “In the COMER lab, I get to work on projects that could one day make a significant difference in the real world and that’s the reason I wanted to become an engineer. I want to create something with value. I feel that I’m doing that with this research. Carbon capture is a hot topic right now, and it will continue to develop. I imagine that technology like ours will be widespread in 10-20 years. It’s amazing to be a part of a team that is focusing on it so early on.”

  • Author

Matt Wheeler

  • Recent
  • Alumni Draw on Their Military Experience in Their Roles as Teachers
    Thursday, May 26, 2022, By Martin Walls
  • Bringing ‘CSI’ Into the Classroom
    Thursday, May 26, 2022, By Dan Bernardi
  • Eugene ‘Gene’ Anderson to Depart Syracuse, Tapped to Lead University of Pittsburgh’s Business School
    Thursday, May 26, 2022, By News Staff
  • Newhouse Creative Advertising Students Win 195 Awards in 1 Year, Setting a New School Record
    Thursday, May 26, 2022, By News Staff
  • “Syracuse University to rename the Carrier Dome – what name would fans choose?”
    Wednesday, May 25, 2022, By Lily Datz

More In STEM

Bringing ‘CSI’ Into the Classroom

Dusting for fingerprints, documenting blood stain patterns and measuring bullet trajectory—you might think this is a description of a recent episode from the popular television series “CSI.” While this may be true, these are also the daily lessons students are…

Matt Cufari Named as a 2022-23 Astronaut Scholar

Matt Cufari, a senior physics major in the College of Arts and Sciences (A&S), a computer science major in the College of Engineering and Computer Science, a Coronat Scholar and a member of the Renée Crown University Honors Program, has…

Dean Rajiv ‘Raj’ Dewan to Step Down as Dean of the School of Information Studies

Rajiv “Raj” Dewan, dean of the School of Information Studies, has announced he will conclude his deanship on June 30, 2022. Dewan plans to return to full-time faculty duties while continuing his research. David Seaman, dean of Syracuse University Libraries…

Biology and Earth and Environmental Sciences Departments Come Together on Diversity and Engagement Initiatives

In 1948, Professor James Hope Birnie became Syracuse University’s first African American faculty member in biology, teaching here until 1951. He was also one of its first biology faculty members to be supported by the National Institutes of Health (NIH)….

Black Hole Image Shows Einstein Was Right, Once Again

Today a team of astronomers announced they successfully captured the first direct image of the black hole at the center of the Milky Way galaxy. Duncan Brown is the Charles Brightman Endowed Professor of Physics at Syracuse University’s College of…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2022 Syracuse University News. All Rights Reserved.