Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Physicist Awarded Grant to Study Physical Cell Biology

Tuesday, June 16, 2015, By Rob Enslin
Share
College of Arts and SciencesResearch and Creative

A physicist in the College of Arts and Sciences has been awarded a major grant to study how the shape and motion of individual cells mold biological tissues into three-dimensional shapes.

M. Lisa Manning

M. Lisa Manning

M. Lisa Manning, associate professor of physics, is part of a trio of researchers who have received $168,750 from the Gordon and Betty Moore Foundation and the Research Corp. for Science Advancement (RCSA) to explore untested ideas in physical cell biology. Their project, “Immersive DNA Force Sensors and Predictive Mechanical Modeling for Tissue Morphogenesis,” grew out of a research competition recently held at Biosphere 2 in Arizona.

Manning’s team includes Justin Kinney, assistant professor of biophysics at Cold Spring Harbor Laboratory, and Margaret Gardel, assistant professor of physics at the University of Chicago.

“As we grow from a fertilized egg into a human being, our cells push and pull against one another, shaping our tissues, our organs and our bodies,” says Manning, who studies the mechanical behavior of biological cells. “Unfortunately, we don’t know much about these microscopic forces, both within and between cells, and how they enable large, multicellular structures, such as people, to develop.”

To address this complex phenomenon, she and her team have proposed an innovative method for measuring and modeling such forces in tissues. They plan to insert small “nanoprobes” of DNA into developing tissues to record where and when these forces occur. The team will also build predictive 3D computational models that will be directly tested with data from the new force probes—a first in the field of physical cell biology.

“Currently, there are methods for measuring forces in tissues along two-dimensional surfaces, but our proposal promises to enable such measurements in three dimensions,” says Manning, adding that principles of theoretical physics will inform much of the process. “It will provide a critical advance for understanding how three-dimensional structures, such as organs, are formed.”

The idea for the project was conceived during a March conference at Biosphere 2. The conference was part of a two-year Scialog program titled “Molecules Come to Life.” Scialog—a portmanteau word blending “science” and dialogue”–is a conference that fosters intensive discussions, team building and on-the-spot collaborations among early-career researchers.

Manning says she and her teammates worked intensely over several days to create an “original, blue-sky, high-risk” research proposal.

“We were one of five interdisciplinary teams awarded grants,” she says, adding that the conference included other early-career physicists, biologists and chemists. “By bringing together theorists and experimentalists, we are building a community of researchers that seek answers to important biological questions, while increasing our understanding of the physical biology of cells.”

  • Author

Rob Enslin

  • Recent
  • Falk College Sport Analytics Students Win Multiple National Competitions
    Friday, May 16, 2025, By Cathleen O'Hare
  • Physics Professor Honored for Efforts to Improve Learning, Retention
    Friday, May 16, 2025, By Sean Grogan
  • Historian Offers Insight on Papal Transition and Legacy
    Friday, May 16, 2025, By Keith Kobland
  • Live Like Liam Foundation Establishes Endowed Scholarship for InclusiveU
    Tuesday, May 13, 2025, By Cecelia Dain
  • ECS Team Takes First Place in American Society of Civil Engineers Competition
    Tuesday, May 13, 2025, By Kwami Maranga

More In STEM

Physics Professor Honored for Efforts to Improve Learning, Retention

The Department of Physics in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime ’25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Graduating Research Quartet Synthesizes Long-Lasting Friendships Through Chemistry

When Jesse Buck ’25, Isabella Chavez Miranda ’25, Lucy Olcott ’25 and Morgan Opp ’25 started as student researchers in medicinal chemist Robert Doyle’s lab, they hoped to hone their research skills. It quickly became evident this would be unlike…

Biologist Reveals New Insights Into Fish’s Unique Attachment Mechanism

On a wave-battered rock in the Northern Pacific Ocean, a fish called the sculpin grips the surface firmly to maintain stability in its harsh environment. Unlike sea urchins, which use their glue-secreting tube feet to adhere to their surroundings, sculpins…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.