Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Research Reveals Biological Barrage that Corrodes Orthopedic Implants

Wednesday, March 18, 2015, By Matt Wheeler
Share
College of Engineering and Computer ScienceResearch and Creative

About half a million people receive hip replacements worldwide every year. Of these, a small percentage will develop health complications due to their implant. Complications like inflammation and infection, even damage to bone and tissue, can become so severe that some devices need to be painfully and invasively removed and replaced. Syracuse Biomaterials Institute Professor Jeremy Gilbert’s latest research challenges the conventional wisdom of why this occurs.

Digitial optical micrograph of inflammatory cell-induced corrosion

Digitial optical micrograph of inflammatory cell-induced corrosion

For more than 40 years, the ball of the total hip replacement has been made from a cobalt-chromium-molybdenum (CoCrMo) alloy and the socket has been made with polyethylene or CoCrMo. The orthopedic research community has known that, as the patient walks, the surfaces rub together and particles and corrosion-based ions are released into the surrounding tissue over time. The assumption for most of the last 30 years was that that these particles and ions were causing a biological reaction that caused health problems in a subset of patients.

Gilbert’s research, “Direct in vivo inflammatory cell-induced corrosion of CoCrMo alloy orthopedic implant surfaces,” indicates that wear and tear is not the only way implants can corrode. Our biology is also waging an attack on the foreign implant.

“Up until this paper, the orthopedic community’s understanding was that corrosion and wear from walking around released particles that cause adverse biological reactions,” explains Gilbert. “What our research finds is that our bodies’ own biological reactions can cause the corrosion directly and that’s a fundamentally different way of thinking about these interactions. “

Gilbert reached his conclusions by looking at hip and knee implants that had been removed from patients. By examining them closely, his research team discovered telltale corrosive “footprints” of phagocytic cells that had crept along the implant, corroding the surface along the way. Phagocytes are the human body’s mechanism for killing and destroying foreign bacteria and objects—our primary tool for fending off infection and in wound healing. The metal showed microscopic signs of deterioration from these cells in all areas of the implants.

These findings reveal that the relationship between implants and the body are more complicated than previously thought, and expand the scope of potential research and medical advances in the area of orthopedics.

“The idea that inflammatory cells in the body can directly corrode the surface of an implant opens up the possibility that it is not just wear and corrosion that causes adverse local tissue reactions, but that ‘adverse’ local tissue reactions can cause corrosion,” explains Gilbert. “A small fundamental advance like this can uncover countless new paths and questions that can lead to a many technical advances to help deal with an issue that is significant in orthopedics today.”

  • Author

Matt Wheeler

  • Recent
  • Calling All Alumni Entrepreneurs: Apply for ’CUSE50 Awards
    Tuesday, June 24, 2025, By John Boccacino
  • Iran Escalation: Experts Available This Week
    Tuesday, June 24, 2025, By Vanessa Marquette
  • SCOTUS Win for Combat Veterans Backed by Syracuse Law Clinic
    Monday, June 23, 2025, By Vanessa Marquette
  • Syracuse Views Summer 2025
    Monday, June 23, 2025, By News Staff
  • Tiffany Xu Named Harry der Boghosian Fellow for 2025-26
    Friday, June 20, 2025, By Julie Sharkey

More In STEM

Student Innovations Shine at 2025 Invent@SU Presentations

Eight teams of engineering students presented designs for original devices to industry experts and investors at Invent@SU Final Presentations. This six-week summer program allows students to design, prototype and pitch their inventions to judges. During the program, students learn about…

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.