Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Physicist Earns Cottrell Scholar Award

Friday, March 6, 2015, By Rob Enslin
Share
AwardsCollege of Arts and SciencesResearch and Creative

A physicist in the College of Arts and Sciences has received a major award to study the mechanics of how biological cells move in tissues. The award also supports the creation of related education initiatives, designed to benefit undergraduates.

M. Lisa Manning

M. Lisa Manning

M. Lisa Manning, assistant professor of physics, is the recipient of a $75,000 Cottrell Scholar Award from the Research Corporation for Science Advancement, the United States’ second-oldest foundation and the first devoted wholly to science.

“We are extremely proud of Professor Manning, who brings considerable energy and depth to her research,” says A. Alan Middleton, professor and chair of physics. “She applies sophisticated theoretical methods and works with experimentalists applying state-of-the-art technologies to analyze experiments on cell migration and granular materials.”

Manning’s proposed research focuses on the behavior of biological cells. Sometimes these cells behave like a liquid, rearranging themselves to move over relatively large distances. This is common during wound healing, embryonic development and the growth of cancer tumors.

Other times, these cells organize themselves like a solid, such as when they form a protective layer or support the weight of a body part.

Manning says such behavior also occurs in non-biological materials, such as so-called “jamming” transitions, where a material becomes more rigid as its density increases, and “glass” transitions, in which viscous, lava-like materials harden during the cooling process.”

“When tissues are close to one of these transitions, small changes affecting single-cell properties can alter the mechanical response of the tissue,” says Manning, a recent recipient of the Alfred P. Sloan Foundation Fellowship and National Science Foundation CAREER Award.

Manning and her students will study groups of cancer cells, trying to infer how single-cell mechanical properties predict tumor organization and large-scale mechanical responses. They also will investigate how structures such as the cytoskeleton reorganize themselves to influence large-scale properties of dense cell masses.

Manning’s ultimate goal is to devise a theoretical framework for describing how cells control “jamming” transitions in tissues.

“There are no guarantees with this kind of research, but I hope it will help me and my collaborators identify new avenues for healing tissues and preventing disease,” she adds.

The Cottrell Scholar Award also recognizes excellence in teaching and academic leadership. As part of the education component of her award, Manning will develop an online assessment tool for use in introductory physics courses, as well as biophysics modules to help explain cutting-edge research. She also will create a course that trains graduate students and undergraduate peer coaches to better assist students in these introductory courses.

  • Author

Rob Enslin

  • Recent
  • First-Year Law Student to First-Year Dean: Lau Combines Law and Business to Continue College of Law’s Upward Trajectory
    Thursday, June 26, 2025, By Robert Conrad
  • Student Innovations Shine at 2025 Invent@SU Presentations
    Thursday, June 26, 2025, By Alex Dunbar
  • Iran Escalation: Experts Available This Week
    Tuesday, June 24, 2025, By Vanessa Marquette
  • SCOTUS Win for Combat Veterans Backed by Syracuse Law Clinic
    Monday, June 23, 2025, By Vanessa Marquette
  • Syracuse Views Summer 2025
    Monday, June 23, 2025, By News Staff

More In STEM

Student Innovations Shine at 2025 Invent@SU Presentations

Eight teams of engineering students presented designs for original devices to industry experts and investors at Invent@SU Final Presentations. This six-week summer program allows students to design, prototype and pitch their inventions to judges. During the program, students learn about…

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.