Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Bond Receives CAREER Award to Investigate a Niche for Biomass

Friday, February 13, 2015, By Matt Wheeler
Share
College of Engineering and Computer ScienceResearch and Creative

Renewable, bio-based products may offer many benefits ranging from decreased greenhouse gas emissions to improved domestic energy security. However, despite growing interest in replacing fossil resources with renewable alternatives, biomass refining industries, particularly those producing biofuels, have struggled to compete with the well-established machinery of petroleum refining.

Jesse Bond

Jesse Bond

The U.S. has the capacity to sustainably harvest a considerable amount of biomass, but that quantity falls short of the amount of petroleum that is used for transportation. Biofuels have their merits, but it is unlikely that they will ever entirely replace the fossil fuels the country uses to fill its gas tanks—at least not at current rates of consumption.

While biomass may not displace fossil fuels when it comes to transportation, there are places where biomass could be competitive with fossil fuels. Crude oil is also used to synthesize reactive chemical intermediates that are used in production of solvents, plastics and polymers. Compared to traditional fuels like gasoline or diesel, these commodities are often challenging to make and relatively expensive. Often, they are easier to synthesize from biomass than they are from crude oil, giving renewable resources a competitive advantage. This could make industries dedicated to the production of bio-based chemicals possible in the near future.

An example of this type of chemical intermediate is levulinic acid, which can be prepared from sugars found in abundance in biomass. Levulinic acid can be used to produce many products that are either identical to, or functionally equivalent to, current petrochemicals.

Assistant Professor Jesse Bond of the Department of Biomedical and Chemical Engineering in the College of Engineering and Computer Science, has received the prestigious National Science Foundation (NSF) Faculty Early Career Development (CAREER) award to further explore levulinic acid’s applications. His work will support development of catalysts and cost-effective technologies that facilitate oxidation of levulinic acid to deliver value-added chemical products.

“My immediate hope is that this research pushes a technology forward that has a positive net impact on sustainability,” Bond says. “Beyond that, my ultimate goal is to teach our students about major problems facing society and the ways that chemical engineering and catalysis can address those problems. No matter where this research leads or how the biotechnology landscape unfolds, catalysis will always have a role in making useful products from available natural resources.”

“Through this work, we are gaining fundamental knowledge about catalytic reactions, and those insights are generally universal. If I have trained my students to think rigorously about governing principles, to ask questions of fundamental importance, and to design experiments that answer those questions—I think those are the most important things that can come from their education.”

 

  • Author

Matt Wheeler

  • Recent
  • Forecasting the Future With Fossils
    Sunday, June 8, 2025, By Caroline K. Reff
  • DPS Earns Accreditation From International Association of Campus Law Enforcement Administrators
    Friday, June 6, 2025, By Kiana Racha
  • Rock Record Illuminates Oxygen History
    Thursday, June 5, 2025, By Dan Bernardi
  • What Can Ancient Climate Tell Us About Modern Droughts?
    Thursday, June 5, 2025, By News Staff
  • Blackstone LaunchPad Founders Circle Welcomes New Members
    Thursday, June 5, 2025, By Cristina Hatem

More In STEM

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

What Can Ancient Climate Tell Us About Modern Droughts?

Climate change is reshaping the global water cycle, disrupting rainfall patterns and putting growing pressure on cities and ecosystems. Some regions are grappling with heavier rainfall and flooding, while others face prolonged droughts that threaten public health, disrupt economies and…

University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy

This month at the All Island Bioeconomy Summit held in Co. Meath, Ireland, it was announced that BiOrbic, Research Ireland Centre for Bioeconomy, comprising 12 leading Irish research universities in Ireland, signed a joint memorandum of understanding (MOU) with the Dynamic Sustainability…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.