Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Nangia Awarded CAREER Grant to Break Barriers in Treating Alzheimer’s

Tuesday, February 10, 2015, By Matt Wheeler
Share
Research and Creative

The 2014 report from the Alzheimer’s Association shows that there are more than 5 million people living with Alzheimer’s in America, which is expected to cost hundreds of billions of dollars in caregiving this year. But treatment of diseases like Alzheimer’s and Parkinson’s often hits a wall—literally and figuratively.

The Blood-Brain Barrier

The Blood-Brain Barrier

This wall is known as the blood-brain barrier (BBB)—a selectively permeable barrier that prevents potentially harmful chemicals in the bloodstream from entering the brain. This defense mechanism presents a challenge because the same selective permeable barrier meant to protect the brain is also a deterrent for drug molecules to reach the brain to treat disease. Right now, medicine uses the brute force method of administering medicine directly to the brain by opening up the patient’s head, but this is not a sustainable way of treating disease.

Professor Shikha Nangia in the College of Engineering and Computer Science’s Department of Biomedical and Chemical Engineering was recently awarded $500,000 from the National Science Foundation’s (NSF) Faculty Early Career Development (CAREER) program for her proposal, “Enabling transport across the blood-brain barrier by engineering thermodynamically favorable pathways.” Her research seeks to identify ways to open up the BBB temporarily to allow disease-fighting medicines to be able to reach the brain in non-invasive ways.

“An analogy to the BBB is that of Velcro,” says Nangia. “On one side you have blood and on one side you have the brain, and there are cells lining up in the middle and they are jam packed—this is the barrier. What we need to do is open up this wall of cells. The prongs of the ‘Velcro’ are made up of proteins. If we can understand the structure of these proteins we can program them to open when we need to get medicine through.”

The overarching goal of the proposed research is to apply theoretical and computational techniques to engineer thermodynamically favorable pathways to enable transport of desired chemicals across the BBB.

Shikha Nangia

Shikha Nangia

Specialized physical barriers called tight junctions, formed by the endothelial cells lining the brain, act as intercellular gatekeepers in regulating passive diffusion molecules and ions into the brain. Essentially, Nangia’s goal is to better understand how the BBB works, what chemicals can move through the BBB, and then how to design a material that can move through the BBB.

Her research will employ a rigorous fundamental theoretical approach to understand the thermodynamic underpinnings of the transport barrier and will use an extensive computational tool-kit to engineer favorable pathways to transcend the BBB.

Educational Outreach

Nangia’s research will also support her to work with three local schools, East Syracuse-Minoa, City of Syracuse and the Syracuse Academy of Science, to train teachers on software that they can bring back to their classrooms to teach students.

 

  • Author

Matt Wheeler

  • Recent
  • DPS Earns Accreditation From International Association of Campus Law Enforcement Administrators
    Friday, June 6, 2025, By Kiana Racha
  • Rock Record Illuminates Oxygen History
    Thursday, June 5, 2025, By Dan Bernardi
  • What Can Ancient Climate Tell Us About Modern Droughts?
    Thursday, June 5, 2025, By News Staff
  • Blackstone LaunchPad Founders Circle Welcomes New Members
    Thursday, June 5, 2025, By Cristina Hatem
  • Syracuse Stage Concludes 2024-25 Season With ‘The National Pastime’
    Wednesday, June 4, 2025, By Joanna Penalva

More In STEM

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

What Can Ancient Climate Tell Us About Modern Droughts?

Climate change is reshaping the global water cycle, disrupting rainfall patterns and putting growing pressure on cities and ecosystems. Some regions are grappling with heavier rainfall and flooding, while others face prolonged droughts that threaten public health, disrupt economies and…

University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy

This month at the All Island Bioeconomy Summit held in Co. Meath, Ireland, it was announced that BiOrbic, Research Ireland Centre for Bioeconomy, comprising 12 leading Irish research universities in Ireland, signed a joint memorandum of understanding (MOU) with the Dynamic Sustainability…

Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science has named Bing Dong as the Traugott Professor of Mechanical and Aerospace Engineering. This endowed professorship is made possible by a 1998 gift from the late Fritz Traugott H’98 and his wife, Frances….

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.