Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Nangia Awarded CAREER Grant to Break Barriers in Treating Alzheimer’s

Tuesday, February 10, 2015, By Matt Wheeler
Share
Research and Creative

The 2014 report from the Alzheimer’s Association shows that there are more than 5 million people living with Alzheimer’s in America, which is expected to cost hundreds of billions of dollars in caregiving this year. But treatment of diseases like Alzheimer’s and Parkinson’s often hits a wall—literally and figuratively.

The Blood-Brain Barrier

The Blood-Brain Barrier

This wall is known as the blood-brain barrier (BBB)—a selectively permeable barrier that prevents potentially harmful chemicals in the bloodstream from entering the brain. This defense mechanism presents a challenge because the same selective permeable barrier meant to protect the brain is also a deterrent for drug molecules to reach the brain to treat disease. Right now, medicine uses the brute force method of administering medicine directly to the brain by opening up the patient’s head, but this is not a sustainable way of treating disease.

Professor Shikha Nangia in the College of Engineering and Computer Science’s Department of Biomedical and Chemical Engineering was recently awarded $500,000 from the National Science Foundation’s (NSF) Faculty Early Career Development (CAREER) program for her proposal, “Enabling transport across the blood-brain barrier by engineering thermodynamically favorable pathways.” Her research seeks to identify ways to open up the BBB temporarily to allow disease-fighting medicines to be able to reach the brain in non-invasive ways.

“An analogy to the BBB is that of Velcro,” says Nangia. “On one side you have blood and on one side you have the brain, and there are cells lining up in the middle and they are jam packed—this is the barrier. What we need to do is open up this wall of cells. The prongs of the ‘Velcro’ are made up of proteins. If we can understand the structure of these proteins we can program them to open when we need to get medicine through.”

The overarching goal of the proposed research is to apply theoretical and computational techniques to engineer thermodynamically favorable pathways to enable transport of desired chemicals across the BBB.

Shikha Nangia

Shikha Nangia

Specialized physical barriers called tight junctions, formed by the endothelial cells lining the brain, act as intercellular gatekeepers in regulating passive diffusion molecules and ions into the brain. Essentially, Nangia’s goal is to better understand how the BBB works, what chemicals can move through the BBB, and then how to design a material that can move through the BBB.

Her research will employ a rigorous fundamental theoretical approach to understand the thermodynamic underpinnings of the transport barrier and will use an extensive computational tool-kit to engineer favorable pathways to transcend the BBB.

Educational Outreach

Nangia’s research will also support her to work with three local schools, East Syracuse-Minoa, City of Syracuse and the Syracuse Academy of Science, to train teachers on software that they can bring back to their classrooms to teach students.

 

  • Author

Matt Wheeler

  • Recent
  • Falk College Sport Analytics Students Win Multiple National Competitions
    Friday, May 16, 2025, By Cathleen O'Hare
  • Physics Professor Honored for Efforts to Improve Learning, Retention
    Friday, May 16, 2025, By Sean Grogan
  • Historian Offers Insight on Papal Transition and Legacy
    Friday, May 16, 2025, By Keith Kobland
  • Live Like Liam Foundation Establishes Endowed Scholarship for InclusiveU
    Tuesday, May 13, 2025, By Cecelia Dain
  • ECS Team Takes First Place in American Society of Civil Engineers Competition
    Tuesday, May 13, 2025, By Kwami Maranga

More In STEM

Physics Professor Honored for Efforts to Improve Learning, Retention

The Department of Physics in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime ’25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Graduating Research Quartet Synthesizes Long-Lasting Friendships Through Chemistry

When Jesse Buck ’25, Isabella Chavez Miranda ’25, Lucy Olcott ’25 and Morgan Opp ’25 started as student researchers in medicinal chemist Robert Doyle’s lab, they hoped to hone their research skills. It quickly became evident this would be unlike…

Biologist Reveals New Insights Into Fish’s Unique Attachment Mechanism

On a wave-battered rock in the Northern Pacific Ocean, a fish called the sculpin grips the surface firmly to maintain stability in its harsh environment. Unlike sea urchins, which use their glue-secreting tube feet to adhere to their surroundings, sculpins…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.