Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Maroo Receives CAREER Grant to Investigate Cooling Next-Gen Tech

Friday, February 6, 2015, By Matt Wheeler
Share
College of Engineering and Computer ScienceResearch and Creative

As technology advances to meet our ever-growing needs, the size of our electronics is decreasing while their performance is increasing. Computer chips are a good example of this. We want them to be small, yet capable of faster processing speeds.

Shalabh Maroo

Shalabh Maroo

All electronics heat up when they are operating. However, the more work they do, the hotter they get, especially when they have a small surface area. All of this heat can diminish their performance significantly. Therefore, rapid and efficient cooling is going to be required to make next-generation computer chips and energy conversion devices possible.

One way to cool computer chips is with boiling—currently the most effective way to remove heat from a surface. Unfortunately, it has its limitations. First, a chip is encased in a heat-exchanging device. As the chip heats up, the heat is transferred to a liquid within the heat exchanger. When it begins to boil, bubbles form on the surface as in a pot of boiling water. The higher the heat transfer, the more rigorous the boiling becomes. With increasing heat, the number of bubbles forming on the surface outnumbers those leaving the surface, causing an accumulation of bubbles that creates a layer of vapor, inhibiting the transfer of heat from the surface into the liquid. Because of this, heat removal tops off at 100-300 watts per square centimeter of area. While substantial, this is still not enough for next-generation devices, where cooling rates of over 1,000 watts per square centimeter are desired.

Professor Shalabh Maroo in the Department of Mechanical and Aerospace Engineering was recently awarded $500,000 from the National Science Foundation’s (NSF) Faculty Early Career Development (CAREER) program for his proposal “Experimental and Numerical Study of Nanoscale Evaporation Heat Transfer for Passive-Flow Driven High-Heat Flux Devices.” Maroo will investigate the fundamental physics associated with nanoscale meniscus evaporation and passive liquid flow to remove large amounts of heat from small surfaces in very short amounts of time.

“Theoretically, we can prevent boiling with use of novel nanotechnology, and achieve nanoscale evaporation, which can remove 10 times as much heat compared to boiling,” says Maroo.

Maroo and his research group will design, fabricate and test nano-devices using molecular-level computer simulations and experiments, and they also aim to uncover the parameters that dictate the steady and optimal performance of the nanoscale evaporation-based device. Eventually, this knowledge could be applied to achieve next-generation heat exchangers for thermal management of electronics and renewable energy technologies, such as concentrated solar photovoltaic cells.

Maroo acknowledges that part of the credit for his NSF CAREER grant should go to the research and hard work of his students, especially Ph.D. students An Zou and Sumith YD, and senior Nikolay Rodionov. Additional information about Maroo’s grant and his research group can be found here and on his lab’s website —  http://maroo.syr.edu .

Educational Outreach

Maroo’s research includes development and implementation of a three-week module on “Nano-science and Nano-engineering” for first-year undergraduate students in ECS 101. He will also support a yearly research opportunity to a minority undergraduate student and yearly workshops on nanotechnology to middle school students in the Syracuse City School District in collaboration with the Upstate Louis Stokes Alliance for Minority Participation.

 

  • Author

Matt Wheeler

  • Recent
  • Art Museum Acquires Indian Scrolls Gifted by SUNY Professor
    Wednesday, July 23, 2025, By Taylor Westerlund
  • Mihm Recognized for Fostering ‘Excellence in Public Service for the Next Generation’
    Wednesday, July 23, 2025, By Jessica Youngman
  • Rabbi Natan Levy Appointed Campus Rabbi for Syracuse Hillel and Jewish Chaplain at Hendricks Chapel
    Tuesday, July 22, 2025, By Dara Harper
  • Imam Amir Durić Appointed Assistant Dean for Religious and Spiritual Life at Hendricks Chapel
    Tuesday, July 22, 2025, By Dara Harper
  • College of Law’s Veterans Legal Clinic Receives Justice for Heroes Grant
    Tuesday, July 22, 2025, By Robert Conrad

More In STEM

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Star Scholar: Julia Fancher Earns Second Astronaut Scholarship for Stellar Research

Julia Fancher, a rising senior majoring in physics and mathematics in the College of Arts and Sciences (A&S), a logic minor in A&S and a member of the Renée Crown University Honors Program, has been renewed as an Astronaut Scholar for…

Traugott Professor of Mechanical and Aerospace Engineering Bing Dong to Present at Prestigious AI Conference

Professor Bing Dong was recently selected to lead a workshop on artificial intelligence (AI) at NeurIPS, the Conference and Workshop on Neural Information Processing Systems. Founded in 1987, NeurIPS is one of the most prestigious annual conferences dedicated to machine learning and AI research. Dong’s workshop…

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching at CERN’s Large Hadron Collider. The Big Bang created equal amounts of matter and antimatter, but now nearly everything—solid, liquid, gas or plasma—is…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.