Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Beyond Today’s Radio Spectrum: Transmitting Wireless Data on Higher Frequencies

Friday, January 23, 2015, By Matt Wheeler
Share
College of Engineering and Computer ScienceResearch and Creative

Everything we do that requires a wireless connection uses the radio spectrum. We’re able to harness radio waves to listen to music in the car or stream Netflix from the 4G network on our smartphones. Each application is assigned its own frequency within the spectrum. The problem is that space is limited and our demand is only increasing. But what if we weren’t bound by this crowded spectrum?

Cenk Gursoy

Cenk Gursoy

The radio spectrum exists on the lower end of the larger electromagnetic spectrum. As you move up the spectrum into microwaves, infrared, visible and ultraviolet light, x-rays and gamma rays, the wavelengths get shorter and their frequency gets higher and higher. Associate Professor Cenk Gursoy of the  College of Engineering and Computer Science sees potential in using higher frequencies for wireless services in something called the “millimeter wave frequency band,” for the primary purpose of allocating more bandwidth to deliver faster, higher-quality video and multimedia content.

Gursoy explains, “The millimeter band is a much broader spectrum and, given the spectrum crunch we are experiencing, we should have already moved there. But there are certain challenges. We intend to look at the challenges and develop solutions to deal with them to move into these higher frequencies.”

The challenges he mentions will not be easily overcome. Substantial research is needed to make this a reality. To start, we don’t have the right equipment for this. New, smaller, adaptive antennas need to be designed for our mobile devices to receive these higher frequency waves. Additionally, while radio waves propagate in a way that can be received over great distances and through weather and structures, millimeter waves require a line-of-sight connection between the transmitting and receiving antennas to work well. Buildings, rain and even the position of a user’s hand on their device can block these shorter wavelengths or have significant impact on the quality of their reception. Attenuation is also a concern. Millimeter waves simply don’t travel the same distances as radio waves.

Research funded by the National Science Foundation will help overcome challenges of harnessing radio waves at the upper end of the spectrum.

Research funded by the National Science Foundation will help overcome challenges of harnessing radio waves at the upper end of the spectrum.

Gursoy and principle investigators at Ohio State University received an award from the National Science Foundation to address these challenges as part of the foundation’s Enhancing Access to the Radio Spectrum (EARS) collaborative research program. Their work will take place over the next three years. The work that Gursoy will be completing at Syracuse University will explore ways to address the line-of-sight and attenuation issues to integrate the use of millimeter waves through modeling.

“By the end of the third year, we will have a good understanding of the limits and what can be done to make this a reality. It’s something that the wireless industry clearly has a vested interest in, so we should see millimeter waves incorporated into things like the upcoming 5G network very soon. If it’s really as promising as it looks, then we should see many products using this by 2020 or earlier,” says Gursoy. “Everyone connected to the project is learning more and it’s exciting because it’s something that very few people are working on and it’s happening here at SU.”

 

  • Author

Matt Wheeler

  • Recent
  • Calling All Alumni Entrepreneurs: Apply for ’CUSE50 Awards
    Tuesday, June 24, 2025, By John Boccacino
  • Iran Escalation: Experts Available This Week
    Tuesday, June 24, 2025, By Vanessa Marquette
  • SCOTUS Win for Combat Veterans Backed by Syracuse Law Clinic
    Monday, June 23, 2025, By Vanessa Marquette
  • Syracuse Views Summer 2025
    Monday, June 23, 2025, By News Staff
  • Tiffany Xu Named Harry der Boghosian Fellow for 2025-26
    Friday, June 20, 2025, By Julie Sharkey

More In STEM

Student Innovations Shine at 2025 Invent@SU Presentations

Eight teams of engineering students presented designs for original devices to industry experts and investors at Invent@SU Final Presentations. This six-week summer program allows students to design, prototype and pitch their inventions to judges. During the program, students learn about…

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.