Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Does Your Smartphone Know the Real You?

Monday, November 24, 2014, By Matt Wheeler
Share
research

Ask someone what they use their smartphone for and they will likely provide examples of how they use it to connect with friends, family and work, take photos, listen to music, play games or get directions. Beneath it all, there is an array of sensors that support these useful features, but they could also be used to make our lives more convenient by learning our specific lifestyles.

Cellphones have underlying sensors that can gather information about your lifestyle.

Smartphones have underlying sensors that can learn the user’s specific lifestyle.

If you’ve used Google Now or Apple’s latest operating system, you are likely familiar with at least one good example of this. In recent years, like magic, both suddenly began to provide users with directions to their homes and workplaces without the user ever actually providing that information. Although it is somewhat spooky at first, there is actually a simple explanation. Your phone’s sensors know your location and how long you spend in that location. If you travel to a certain location at the same time every day and spend 8 to 16 hours there, it is very likely that it is your home. Similarly, if you travel to the same place five days a week for approximately eight hours a day, it is easy to guess that it is your workplace.

Professor Jian Tang of the College of Engineering and Computer Science is confident that much more can be accomplished using the data that these sensors collect as we use them and carry them around in our pockets every day. At a recent Syracuse Center of Excellence symposium, Tang presented his research on human-centric sensing with smartphones to provide smartphone users with more accurate shopping, dining and entertainment recommendations and provide other information that is specifically useful to them. It could even contribute to the safety of elderly and disabled people.

He explains, “We argue that a smartphone can do much more than just look at a person’s location to provide context. By using all of the sensors available to us, we are able to characterize many elements of their lifestyle. Most current models are equipped with many different sensors, including the GPS, digital compass, accelerometer, gyroscope, camera and a 4G or WiFi interface. Sensors are not limited to things built into the smartphone, either. Any sensor that can be attached to the phone through some network interface, such as Google Glass and FitBit, can provide insight as well.”

Tang and his team developed a mobile application called “Lifestyle Learning by Smartphone Sensing” to use the smartphone to learn a person’s lifestyle. To test it, they selected a group of users in six major cities and monitored their activities through the app for a month and a half and were able to identify places of interest for the test subjects.

Data collected from a businesswoman in Boston showed that she liked to shop, and enjoyed places like the mall, nice restaurants and coffee shops. Amazingly, the lifestyle model and sensors were also able to predict what the participants were going to do in the next two hours with an accuracy rate of approximately 70 percent. They also learned that if the weather is nice and temperature is high, people were more likely to go out to a restaurant. If it was rainy and the temperature was low, people tended to stay in. All of this info could be used to provide more useful advertisements and suggestions.

Tang believes that these sensors could be put to good use to keep disabled or elderly people safe as well. The sensors could alert family members if they detected any aberrant change in the person’s normal behavior, such as a lack of movement or travel to an unusual location at an odd time of day.

With smartphone technology constantly in flux, Tang intends to keep up with the changes. He says, “We have created a unified platform that can request and collect data from the sensors to support different sensing applications. We don’t want to have to build a new platform every time a new use is introduced. Most existing systems are application-specific and we want to build a unified system that can be used for all applications. Also, we want the platform to be able to support new and different kinds of sensors as they are introduced.”

  • Author

Matt Wheeler

  • Recent
  • Drama Department to Virtually Present New Theatrical Work Inspired by University’s 150th Anniversary
    Saturday, January 23, 2021, By Erica Blust
  • Professor Rahman Awarded Google Grant to Engage Underrepresented Students in Computing Research
    Saturday, January 23, 2021, By Alex Dunbar
  • Special Collections Research Center Launches Latin American 45s Digital Collection
    Saturday, January 23, 2021, By Cristina Hatem
  • VPA Faculty to Present World Premieres at Society for New Music Concert Jan. 31
    Saturday, January 23, 2021, By News Staff
  • ‘Democracy on Trial: Can We Save It?’
    Friday, January 22, 2021, By News Staff

More In STEM

Professor Rahman Awarded Google Grant to Engage Underrepresented Students in Computing Research

Electrical engineering and computer science (EECS) Professor Farzana Rahman received a 2020 Google exploreCSR award to fund the development of an undergraduate student engagement workshop program, Research Exposure in Socially Relevant Computing (RESORC). The RESORC program will provide research opportunities…

Arts and Sciences Welcomes New Director of Forensics Kathleen Corrado

After 25 years working in the field of forensic science and over two decades of executive experience as a laboratory director, Kathleen Corrado has been named director of the Forensic and National Security Science Institute (FNSSI) in the College of…

Hehnly Lab Awarded $1.2M NIH Grant to Research Critical Tissue Formation

A key process during the development of an embryo is tissue morphogenesis, where the number of cells in an organism increase through cell division and tissues begins to take shape. Heidi Hehnly, assistant professor of biology, has been awarded a…

The Role of Digital Forensics and Tracking Down US Capitol Riot Criminals

With just under a week left before President-elect Joe Biden’s inauguration ceremony, investigators and law enforcement agencies across the country are working speedily to identify as many of the Jan. 6 U.S. Capitol riot offenders as they can. Knowing exactly…

A&S Researchers Awarded $2.1M Grant to Study Causes of Congenital Heart Defects

Congenital heart defects are the most common type of birth defect, affecting nearly 1 percent of births in the United States each year, according to the Centers for Disease Control and Prevention. Doctors have been unable to lower that number…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2021 Syracuse University News. All Rights Reserved.