Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Does Your Smartphone Know the Real You?

Monday, November 24, 2014, By Matt Wheeler
Share
Research and Creative

Ask someone what they use their smartphone for and they will likely provide examples of how they use it to connect with friends, family and work, take photos, listen to music, play games or get directions. Beneath it all, there is an array of sensors that support these useful features, but they could also be used to make our lives more convenient by learning our specific lifestyles.

Cellphones have underlying sensors that can gather information about your lifestyle.

Smartphones have underlying sensors that can learn the user’s specific lifestyle.

If you’ve used Google Now or Apple’s latest operating system, you are likely familiar with at least one good example of this. In recent years, like magic, both suddenly began to provide users with directions to their homes and workplaces without the user ever actually providing that information. Although it is somewhat spooky at first, there is actually a simple explanation. Your phone’s sensors know your location and how long you spend in that location. If you travel to a certain location at the same time every day and spend 8 to 16 hours there, it is very likely that it is your home. Similarly, if you travel to the same place five days a week for approximately eight hours a day, it is easy to guess that it is your workplace.

Professor Jian Tang of the College of Engineering and Computer Science is confident that much more can be accomplished using the data that these sensors collect as we use them and carry them around in our pockets every day. At a recent Syracuse Center of Excellence symposium, Tang presented his research on human-centric sensing with smartphones to provide smartphone users with more accurate shopping, dining and entertainment recommendations and provide other information that is specifically useful to them. It could even contribute to the safety of elderly and disabled people.

He explains, “We argue that a smartphone can do much more than just look at a person’s location to provide context. By using all of the sensors available to us, we are able to characterize many elements of their lifestyle. Most current models are equipped with many different sensors, including the GPS, digital compass, accelerometer, gyroscope, camera and a 4G or WiFi interface. Sensors are not limited to things built into the smartphone, either. Any sensor that can be attached to the phone through some network interface, such as Google Glass and FitBit, can provide insight as well.”

Tang and his team developed a mobile application called “Lifestyle Learning by Smartphone Sensing” to use the smartphone to learn a person’s lifestyle. To test it, they selected a group of users in six major cities and monitored their activities through the app for a month and a half and were able to identify places of interest for the test subjects.

Data collected from a businesswoman in Boston showed that she liked to shop, and enjoyed places like the mall, nice restaurants and coffee shops. Amazingly, the lifestyle model and sensors were also able to predict what the participants were going to do in the next two hours with an accuracy rate of approximately 70 percent. They also learned that if the weather is nice and temperature is high, people were more likely to go out to a restaurant. If it was rainy and the temperature was low, people tended to stay in. All of this info could be used to provide more useful advertisements and suggestions.

Tang believes that these sensors could be put to good use to keep disabled or elderly people safe as well. The sensors could alert family members if they detected any aberrant change in the person’s normal behavior, such as a lack of movement or travel to an unusual location at an odd time of day.

With smartphone technology constantly in flux, Tang intends to keep up with the changes. He says, “We have created a unified platform that can request and collect data from the sensors to support different sensing applications. We don’t want to have to build a new platform every time a new use is introduced. Most existing systems are application-specific and we want to build a unified system that can be used for all applications. Also, we want the platform to be able to support new and different kinds of sensors as they are introduced.”

  • Author

Matt Wheeler

  • Recent
  • Calling All Alumni Entrepreneurs: Apply for ’CUSE50 Awards
    Tuesday, June 24, 2025, By John Boccacino
  • Iran Escalation: Experts Available This Week
    Tuesday, June 24, 2025, By Vanessa Marquette
  • SCOTUS Win for Combat Veterans Backed by Syracuse Law Clinic
    Monday, June 23, 2025, By Vanessa Marquette
  • Syracuse Views Summer 2025
    Monday, June 23, 2025, By News Staff
  • Tiffany Xu Named Harry der Boghosian Fellow for 2025-26
    Friday, June 20, 2025, By Julie Sharkey

More In STEM

Student Innovations Shine at 2025 Invent@SU Presentations

Eight teams of engineering students presented designs for original devices to industry experts and investors at Invent@SU Final Presentations. This six-week summer program allows students to design, prototype and pitch their inventions to judges. During the program, students learn about…

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.