Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Green’s Research Helps Navy Design Vessels That Swim

Monday, October 13, 2014, By Matt Wheeler
Share
College of Engineering and Computer Scienceresearch

Few things move with the agility or grace of a fish. Using subtle, waving movements, they slip silently through water. Yet, look closely and you can see that not all fish swim alike. Great white sharks with forked tails are built for bursts of speed. Serpentine eels have the ability to change direction on a dime. Tunas have a streamlined form that allows them to travel smoothly for long distances. The differences in their bodies and fins, developed over eons of evolutionary pressure, give them disparate abilities to move through the water.

Melissa Green in her lab

Melissa Green in her lab

The effective swimming methods of fish and other aquatic animals are the inspiration for the Office of Naval Research’s (ONR) Biologically Inspired Underwater Propulsion Program. The program aims to create underwater vessels that mimic, and even improve upon, the movement of underwater wildlife. As part of this program, Melissa Green, assistant professor in the College of Engineering and Computer Science, has been awarded a three-year, $650,000 grant for her work on “Lagrangian methods in unsteady propulsion: characterizing vortex wake structure and force production.” Green specializes in the area of fundamental fluid dynamics, specifically vortex dynamics and bio-inspired propulsion

Of all the features that affect fish movement, the flapping of the tail, or caudal fin, is one of the most important. This is where Green and her research team come in. In a water channel in her lab at the Syracuse Center of Excellence (CoE), she will experiment with a rigid piece of thin plastic that is equipped to move side to side at different speeds, just like a caudal fin, as gallons of water flow around it. Green will measure the force on the plastic flapping fin and observe the swirling water that the swish of the plastic tail leaves behind.

A visualization of the analysis on a trapezoidal panel—the model of caudal fin flapping

A visualization of the analysis on a trapezoidal panel—the model of caudal fin flapping

Green explains, “Even with a simulated caudal fin so simple and at a low amplitude of flapping, you get flow dynamics that are really three dimensional, rich and complex. I use Langrangian coherent structures to look at this swirling water the flapping creates, known as vortex streets. Vortex streets are like a signature of what happens when the fin interacts with the water. You can tell if the structure of the wake propulsion was created efficiently or not. With this grant, our job is to characterize and quantitatively map these structures to the actuation used to create them, and to the measured propulsive performance. The long-term goal is to be able to choose to make a wake that looks like what we know is an efficient wake, or a powerful wake, or a ‘sharp right turn,’ and then we can start stitching actuation together for more complex motion planning.”

This research will inform the design and control strategies for a range of underwater vehicle applications—primarily small, unmanned vessels. Green’s work will help ONR determine what it takes to make a vehicle with quick, powerful bursts of speed, travel long distances, using very little energy, or be able to maneuver and change direction suddenly. Through the research of Green’s labs and the ONR’s Biologically Inspired Underwater Propulsion Program, man-made “fish” may eventually out-swim the genuine article.

  • Author

Matt Wheeler

  • Recent
  • Pre-Registration Open for On-Campus Vaccine Clinic
    Friday, April 16, 2021, By News Staff
  • Commencement 2021 Update
    Friday, April 16, 2021, By News Staff
  • Activities for the Weekend of April 15-19 | Submit Proof of Vaccination
    Thursday, April 15, 2021, By News Staff
  • ‘Biden is Considering Overhauling the Supreme Court. That’s Happened During Every Crisis in US Democracy’
    Thursday, April 15, 2021, By Lily Datz
  • ‘It Was Never All or Nothing in Afghanistan’
    Thursday, April 15, 2021, By News Staff

More In STEM

Bioengineering Ph.D. Student Receives National Recognition for Breakthrough Molecular Computational Tool

Nandhini Rajagopal’s accomplishments are massive even though her research focuses on small molecules. As part of biomedical and chemical engineering Professor Shikha Nangia’s research group, the Ph.D. student has focused her work on minute interactions between protein molecules in the…

New Study From Department of Biology Highlights Ways to Support Students in Virtual Learning Environments

The mass migration to virtual learning that resulted from the COVID-19 pandemic led to a profound change in student learning. While it presented many challenges, it also created opportunities for documenting responses. Two researchers from the Department of Biology in…

Research Computing: A Decade of Discovery on Campus

Do you need more computing power to move your work forward? Since 2011, the Research Computing team within Information Technology Services (ITS) has helped faculty and staff tackle computational challenges beyond the capabilities of a normal desktop or laptop computer. Each…

Engineering Professor Shobha Bhatia Receives 2021 Judith Greenberg Seinfeld Scholar Award

Civil and Environmental Engineering Professor Shobha Bhatia has been honored by Chancellor Kent Syverud with a 2021 Judith Greenberg Seinfeld Scholar award. The award recognizes exceptional creativity and a passion for excellence. It provides $10,000 for Bhatia to undertake an…

Using Syracuse Lava to Understand Metal Worlds

In August 2022, NASA will embark on a space mission to 16 Psyche, a 140-mile diameter giant metal asteroid situated in the asteroid belt between Mars and Jupiter. NASA says it will be the first mission to investigate a planetary…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2021 Syracuse University News. All Rights Reserved.