Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Green’s Research Helps Navy Design Vessels That Swim

Monday, October 13, 2014, By Matt Wheeler
Share
College of Engineering and Computer ScienceResearch and Creative

Few things move with the agility or grace of a fish. Using subtle, waving movements, they slip silently through water. Yet, look closely and you can see that not all fish swim alike. Great white sharks with forked tails are built for bursts of speed. Serpentine eels have the ability to change direction on a dime. Tunas have a streamlined form that allows them to travel smoothly for long distances. The differences in their bodies and fins, developed over eons of evolutionary pressure, give them disparate abilities to move through the water.

Melissa Green in her lab

Melissa Green in her lab

The effective swimming methods of fish and other aquatic animals are the inspiration for the Office of Naval Research’s (ONR) Biologically Inspired Underwater Propulsion Program. The program aims to create underwater vessels that mimic, and even improve upon, the movement of underwater wildlife. As part of this program, Melissa Green, assistant professor in the College of Engineering and Computer Science, has been awarded a three-year, $650,000 grant for her work on “Lagrangian methods in unsteady propulsion: characterizing vortex wake structure and force production.” Green specializes in the area of fundamental fluid dynamics, specifically vortex dynamics and bio-inspired propulsion

Of all the features that affect fish movement, the flapping of the tail, or caudal fin, is one of the most important. This is where Green and her research team come in. In a water channel in her lab at the Syracuse Center of Excellence (CoE), she will experiment with a rigid piece of thin plastic that is equipped to move side to side at different speeds, just like a caudal fin, as gallons of water flow around it. Green will measure the force on the plastic flapping fin and observe the swirling water that the swish of the plastic tail leaves behind.

A visualization of the analysis on a trapezoidal panel—the model of caudal fin flapping

A visualization of the analysis on a trapezoidal panel—the model of caudal fin flapping

Green explains, “Even with a simulated caudal fin so simple and at a low amplitude of flapping, you get flow dynamics that are really three dimensional, rich and complex. I use Langrangian coherent structures to look at this swirling water the flapping creates, known as vortex streets. Vortex streets are like a signature of what happens when the fin interacts with the water. You can tell if the structure of the wake propulsion was created efficiently or not. With this grant, our job is to characterize and quantitatively map these structures to the actuation used to create them, and to the measured propulsive performance. The long-term goal is to be able to choose to make a wake that looks like what we know is an efficient wake, or a powerful wake, or a ‘sharp right turn,’ and then we can start stitching actuation together for more complex motion planning.”

This research will inform the design and control strategies for a range of underwater vehicle applications—primarily small, unmanned vessels. Green’s work will help ONR determine what it takes to make a vehicle with quick, powerful bursts of speed, travel long distances, using very little energy, or be able to maneuver and change direction suddenly. Through the research of Green’s labs and the ONR’s Biologically Inspired Underwater Propulsion Program, man-made “fish” may eventually out-swim the genuine article.

  • Author

Matt Wheeler

  • Recent
  • Syracuse Stage Opens Season With Production of WWI Musical ‘The Hello Girls’
    Monday, September 15, 2025, By Joanna Penalva
  • Empowering Supervisors Through Communication and Leadership Skills: Crucial Conversations and Crucial Influence Return This Fall
    Monday, September 15, 2025, By News Staff
  • Renée Crown University Honors Program Launches New Tradition
    Monday, September 15, 2025, By News Staff
  • Institutional Research Team Joins Office of Institutional Effectiveness
    Monday, September 15, 2025, By Wendy S. Loughlin
  • University Partnering With CXtec, United Way on Electronic Upcycle Event
    Friday, September 12, 2025, By John Boccacino

More In STEM

Professor Shikha Nangia Named as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering

The College of Engineering and Computer Science (ECS) has announced the appointment of Shikha Nangia as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering. Made possible by a gift from the late Milton and Ann Stevenson,…

Celebrating a Decade of Gravitational Waves

Ten years ago, a faint ripple in the fabric of space-time forever changed our understanding of the Universe. On Sept. 14, 2015, scientists at the Laser Interferometer Gravitational-Wave Observatory (LIGO) made the first direct detection of gravitational waves—disturbances caused by the…

Quiet Campus, Loud Impact: Syracuse Research Heats Up Over Summer

While summer may bring a quiet calm to the Quad, the drive to discover at Syracuse University never rests. The usual buzz of students rushing between classes may fade, but inside the labs of the College of Arts and Sciences…

Tissue Forces Help Shape Developing Organs

A new study looks at the physical forces that help shape developing organs. Scientists in the past believed that the fast-acting biochemistry of genes and proteins is responsible for directing this choreography. But new research from the College of Arts…

Maxwell’s Baobao Zhang Awarded NSF CAREER Grant to Study Generative AI in the Workplace

Baobao Zhang, associate professor of political science and Maxwell Dean Associate Professor of the Politics of AI, has received a National Science Foundation Faculty Early Career Development (CAREER) Award for $567,491 to support her project, “Future of Generative Artificial Intelligence…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.