Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Lecture to Focus on Brain Imaging

Monday, September 8, 2014, By Matt Wheeler
Share
College of Engineering and Computer Sciencespeakers

The College of Engineering and Computer Science’s Biomedical and Chemical Engineering department will host “Photoacoustic Tomography: Ultrasonically Beating Optical Diffusion and Diffraction,” as part of the BMCE Distinguished Lecture Series on Friday, Sept. 12, in 001 Life Science Complex, from 1-2 p.m.

Lihong Wang

Lihong Wang

In the presentation, Lihong Wang of Washington University in St. Louis will explain how photoacoustic tomography uses light and sound to create high resolution, 3-D imaging of the brain. This can be used to better study the brain’s inner workings and detect brain tumors earlier without posing the health risks of x-ray radiation.

The seminar is open to anyone interested in learning more about photoacoustic tomography. For more information, please contact Dawn Long in the Department of Biomedical and Chemical Engineering at dmlong@syr.edu or 315-443-4575.

Please note that the location of this event has changed from 105 Link Hall to 001 Life Sciences complex to accommodate a larger audience.

Photoacoustic tomography has been developed for in vivo functional, metabolic, molecular and histologic imaging by physically combining non-ionizing optical and ultrasonic waves. Broad applications include early-cancer detection and brain imaging. Unlike ionizing x-ray radiation, non-ionizing optical waves pose no health hazard and reveal biochemical contrast. Unfortunately, optical waves do not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution optical imaging—such as confocal microscopy, two-photon microscopy and optical coherence tomography—is limited to superficial imaging within the optical diffusion limit (~1 mm in the skin or ~2 mm in the brain) of the surface of scattering tissue. Ultrasonic imaging, on the contrary, provides deep penetration and high spatial resolution but suffers strong speckle artifacts as well as poor contrast in early-stage tumors. By synergistically combining light and sound, photoacoustic tomography provides deep penetration at high ultrasonic resolution and yields speckle-free images with high optical contrast.

Wang earned his Ph.D. at Rice University in Houston, Texas. He currently holds the Gene K. Beare Distinguished Professorship of Biomedical Engineering at Washington University in St. Louis. His book entitled “Biomedical Optics: Principles and Imaging,” one of the first textbooks in the field, won the 2010 Joseph W. Goodman Book Writing Award. He also coauthored a book on polarization and edited the first book on photoacoustic tomography.

Wang has published 400 peer-reviewed journal articles and delivered 390 keynote, plenary or invited talks. His Google Scholar h-index and citations have reached 90 and 31,000, respectively. His laboratory was the first to report functional photoacoustic tomography, 3D photoacoustic microscopy (PAM), the photoacoustic Doppler effect, photoacoustic reporter gene imaging, microwave-induced thermoacoustic tomography, the universal photoacoustic reconstruction algorithm, frequency-swept ultrasound-modulated optical tomography, time-reversed ultrasonically encoded (TRUE) optical focusing, sonoluminescence tomography, Mueller-matrix optical coherence tomography, optical coherence computed tomography and oblique-incidence reflectometry.

  • Author

Matt Wheeler

  • Recent
  • First-Year Law Student to First-Year Dean: Lau Combines Law and Business to Continue College of Law’s Upward Trajectory
    Thursday, June 26, 2025, By Robert Conrad
  • Student Innovations Shine at 2025 Invent@SU Presentations
    Thursday, June 26, 2025, By Alex Dunbar
  • Iran Escalation: Experts Available This Week
    Tuesday, June 24, 2025, By Vanessa Marquette
  • SCOTUS Win for Combat Veterans Backed by Syracuse Law Clinic
    Monday, June 23, 2025, By Vanessa Marquette
  • Syracuse Views Summer 2025
    Monday, June 23, 2025, By News Staff

More In STEM

Student Innovations Shine at 2025 Invent@SU Presentations

Eight teams of engineering students presented designs for original devices to industry experts and investors at Invent@SU Final Presentations. This six-week summer program allows students to design, prototype and pitch their inventions to judges. During the program, students learn about…

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.