Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Going Direct: Communication in a Device-to-Device Network

Monday, July 21, 2014, By Matt Wheeler
Share
AwardsCollege of Engineering and Computer Science

Two Ph.D students, Chenfei Gao and Xiang Sheng, and their advisor Professor Jian Tang, from the Department of Electrical Engineering and Computer Science in the College of Engineering and Computer Science, received a best paper award in the 2014 IEEE International Conference on Communications (ICC) for their paper on device-to-device (D2D) communication as a green wireless networking technique. The ICC is one of the two flagship conferences in the IEEE Communications Society.

D2D_Tang_071414-300x245In their paper, “Joint mode selection, channel allocation and power assignment for green device-to-device communications,” they discuss how the rapid growth of the number of wireless terminals, compounded by the increase in traffic demand, has led to wireless networks being one of the largest contributors to power consumption.

“This huge energy consumption has raised public concerns about electricity costs and greenhouse gas emissions that are known to have a significant impact on the global climate,” writes Tang.

Their research looks at the area of D2D communication whereby wireless devices are able to communicate directly over a D2D link. The base station (BS), where wireless units currently relay information through, would now only be used to set up the link but not relay data. By reducing the data relayed through the BS it reduces the traffic load resulting in a reduction in power consumption. Currently there are over four million BSs and each consumes an average of 25 mega watt-hours per year.

D2D is considered as a key enabling technology for the next generation, (i.e., 5G) wireless communications.

In their paper, they aim to enable green D2D communications in Orthogonal Frequency-Division Multiple Access-based wireless networks by studying a fundamental resource allocation problem. They present a power-efficient algorithm to jointly determine mode selection, channel allocation and power assignment, based on a practical model in which link data rate is an increasing step function of signal-to-interference-plus-noise ratio at the receiver. Note that in most related work, link data rate is modeled using the Shannon’s equation. This may not be practical since the Shannon’s equation provides an upper bound (rather than actual value) for link data rate. It has been shown by their simulation results that the proposed algorithm can achieve over 57 percent power savings, compared to several baseline methods.

  • Author

Matt Wheeler

  • Recent
  • Student Veteran Anthony Ruscitto Honored as a Tillman Scholar
    Friday, July 18, 2025, By John Boccacino
  • Bandier Students Explore Latin America’s Music Industry
    Thursday, July 17, 2025, By Keith Kobland
  • Architecture Students’ Project Selected for Royal Academy Exhibition
    Thursday, July 17, 2025, By Julie Sharkey
  • NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered
    Wednesday, July 16, 2025, By Cristina Hatem
  • Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering
    Wednesday, July 16, 2025, By Emma Ertinger

More In STEM

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Star Scholar: Julia Fancher Earns Second Astronaut Scholarship for Stellar Research

Julia Fancher, a rising senior majoring in physics and mathematics in the College of Arts and Sciences (A&S), a logic minor in A&S and a member of the Renée Crown University Honors Program, has been renewed as an Astronaut Scholar for…

Traugott Professor of Mechanical and Aerospace Engineering Bing Dong to Present at Prestigious AI Conference

Professor Bing Dong was recently selected to lead a workshop on artificial intelligence (AI) at NeurIPS, the Conference and Workshop on Neural Information Processing Systems. Founded in 1987, NeurIPS is one of the most prestigious annual conferences dedicated to machine learning and AI research. Dong’s workshop…

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching at CERN’s Large Hadron Collider. The Big Bang created equal amounts of matter and antimatter, but now nearly everything—solid, liquid, gas or plasma—is…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.