Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Going Direct: Communication in a Device-to-Device Network

Monday, July 21, 2014, By Matt Wheeler
Share
awardsCollege of Engineering and Computer Science

Two Ph.D students, Chenfei Gao and Xiang Sheng, and their advisor Professor Jian Tang, from the Department of Electrical Engineering and Computer Science in the College of Engineering and Computer Science, received a best paper award in the 2014 IEEE International Conference on Communications (ICC) for their paper on device-to-device (D2D) communication as a green wireless networking technique. The ICC is one of the two flagship conferences in the IEEE Communications Society.

D2D_Tang_071414-300x245In their paper, “Joint mode selection, channel allocation and power assignment for green device-to-device communications,” they discuss how the rapid growth of the number of wireless terminals, compounded by the increase in traffic demand, has led to wireless networks being one of the largest contributors to power consumption.

“This huge energy consumption has raised public concerns about electricity costs and greenhouse gas emissions that are known to have a significant impact on the global climate,” writes Tang.

Their research looks at the area of D2D communication whereby wireless devices are able to communicate directly over a D2D link. The base station (BS), where wireless units currently relay information through, would now only be used to set up the link but not relay data. By reducing the data relayed through the BS it reduces the traffic load resulting in a reduction in power consumption. Currently there are over four million BSs and each consumes an average of 25 mega watt-hours per year.

D2D is considered as a key enabling technology for the next generation, (i.e., 5G) wireless communications.

In their paper, they aim to enable green D2D communications in Orthogonal Frequency-Division Multiple Access-based wireless networks by studying a fundamental resource allocation problem. They present a power-efficient algorithm to jointly determine mode selection, channel allocation and power assignment, based on a practical model in which link data rate is an increasing step function of signal-to-interference-plus-noise ratio at the receiver. Note that in most related work, link data rate is modeled using the Shannon’s equation. This may not be practical since the Shannon’s equation provides an upper bound (rather than actual value) for link data rate. It has been shown by their simulation results that the proposed algorithm can achieve over 57 percent power savings, compared to several baseline methods.

  • Author

Matt Wheeler

  • Recent
  • Dining Centers to Resume In-Person Dining Monday, April 19, at 11 a.m.
    Sunday, April 18, 2021, By News Staff
  • Libraries Receive Two Access and Digitization Grants
    Sunday, April 18, 2021, By Cristina Hatem
  • Pre-Registration Open for On-Campus Vaccine Clinic
    Friday, April 16, 2021, By News Staff
  • Commencement 2021 Update
    Friday, April 16, 2021, By News Staff
  • Activities for the Weekend of April 15-19 | Submit Proof of Vaccination
    Thursday, April 15, 2021, By News Staff

More In STEM

Bioengineering Ph.D. Student Receives National Recognition for Breakthrough Molecular Computational Tool

Nandhini Rajagopal’s accomplishments are massive even though her research focuses on small molecules. As part of biomedical and chemical engineering Professor Shikha Nangia’s research group, the Ph.D. student has focused her work on minute interactions between protein molecules in the…

New Study From Department of Biology Highlights Ways to Support Students in Virtual Learning Environments

The mass migration to virtual learning that resulted from the COVID-19 pandemic led to a profound change in student learning. While it presented many challenges, it also created opportunities for documenting responses. Two researchers from the Department of Biology in…

Research Computing: A Decade of Discovery on Campus

Do you need more computing power to move your work forward? Since 2011, the Research Computing team within Information Technology Services (ITS) has helped faculty and staff tackle computational challenges beyond the capabilities of a normal desktop or laptop computer. Each…

Engineering Professor Shobha Bhatia Receives 2021 Judith Greenberg Seinfeld Scholar Award

Civil and Environmental Engineering Professor Shobha Bhatia has been honored by Chancellor Kent Syverud with a 2021 Judith Greenberg Seinfeld Scholar award. The award recognizes exceptional creativity and a passion for excellence. It provides $10,000 for Bhatia to undertake an…

Using Syracuse Lava to Understand Metal Worlds

In August 2022, NASA will embark on a space mission to 16 Psyche, a 140-mile diameter giant metal asteroid situated in the asteroid belt between Mars and Jupiter. NASA says it will be the first mission to investigate a planetary…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2021 Syracuse University News. All Rights Reserved.