Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Going Direct: Communication in a Device-to-Device Network

Monday, July 21, 2014, By Matt Wheeler
Share
AwardsCollege of Engineering and Computer Science

Two Ph.D students, Chenfei Gao and Xiang Sheng, and their advisor Professor Jian Tang, from the Department of Electrical Engineering and Computer Science in the College of Engineering and Computer Science, received a best paper award in the 2014 IEEE International Conference on Communications (ICC) for their paper on device-to-device (D2D) communication as a green wireless networking technique. The ICC is one of the two flagship conferences in the IEEE Communications Society.

D2D_Tang_071414-300x245In their paper, “Joint mode selection, channel allocation and power assignment for green device-to-device communications,” they discuss how the rapid growth of the number of wireless terminals, compounded by the increase in traffic demand, has led to wireless networks being one of the largest contributors to power consumption.

“This huge energy consumption has raised public concerns about electricity costs and greenhouse gas emissions that are known to have a significant impact on the global climate,” writes Tang.

Their research looks at the area of D2D communication whereby wireless devices are able to communicate directly over a D2D link. The base station (BS), where wireless units currently relay information through, would now only be used to set up the link but not relay data. By reducing the data relayed through the BS it reduces the traffic load resulting in a reduction in power consumption. Currently there are over four million BSs and each consumes an average of 25 mega watt-hours per year.

D2D is considered as a key enabling technology for the next generation, (i.e., 5G) wireless communications.

In their paper, they aim to enable green D2D communications in Orthogonal Frequency-Division Multiple Access-based wireless networks by studying a fundamental resource allocation problem. They present a power-efficient algorithm to jointly determine mode selection, channel allocation and power assignment, based on a practical model in which link data rate is an increasing step function of signal-to-interference-plus-noise ratio at the receiver. Note that in most related work, link data rate is modeled using the Shannon’s equation. This may not be practical since the Shannon’s equation provides an upper bound (rather than actual value) for link data rate. It has been shown by their simulation results that the proposed algorithm can achieve over 57 percent power savings, compared to several baseline methods.

  • Author

Matt Wheeler

  • Recent
  • Falk College Sport Analytics Students Win Multiple National Competitions
    Friday, May 16, 2025, By Cathleen O'Hare
  • Physics Professor Honored for Efforts to Improve Learning, Retention
    Friday, May 16, 2025, By Sean Grogan
  • Historian Offers Insight on Papal Transition and Legacy
    Friday, May 16, 2025, By Keith Kobland
  • Live Like Liam Foundation Establishes Endowed Scholarship for InclusiveU
    Tuesday, May 13, 2025, By Cecelia Dain
  • ECS Team Takes First Place in American Society of Civil Engineers Competition
    Tuesday, May 13, 2025, By Kwami Maranga

More In STEM

Physics Professor Honored for Efforts to Improve Learning, Retention

The Department of Physics in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime ’25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Graduating Research Quartet Synthesizes Long-Lasting Friendships Through Chemistry

When Jesse Buck ’25, Isabella Chavez Miranda ’25, Lucy Olcott ’25 and Morgan Opp ’25 started as student researchers in medicinal chemist Robert Doyle’s lab, they hoped to hone their research skills. It quickly became evident this would be unlike…

Biologist Reveals New Insights Into Fish’s Unique Attachment Mechanism

On a wave-battered rock in the Northern Pacific Ocean, a fish called the sculpin grips the surface firmly to maintain stability in its harsh environment. Unlike sea urchins, which use their glue-secreting tube feet to adhere to their surroundings, sculpins…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.