Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Chemist to Use NSF Grant to Bolster Study of Materials Chemistry, Nanoscience

Monday, July 21, 2014, By Rob Enslin
Share
College of Arts and SciencesResearch and Creative

A chemist in the College of Arts and Sciences has received a major grant to study the synthesis of stainless nanoparticles.

Mat Maye

Mathew Maye (Photo courtesy of Brookhaven National Laboratory)

Mathew M. Maye, associate professor of chemistry, has been awarded a three-year, $360,000 grant from the National Science Foundation (NSF). The award supports his ongoing work with metal stainless alloy nanostructures, the results of which may impact gas storage, heterogeneous catalysis and rechargeable lithium-ion batteries.

Maye’s approach is novel, in that he is attempting to chemically synthesize nanoparticle alloys that resemble steel and stainless steel.

“We’re all aware of the basic properties of stainless steel,” says Maye, citing shiny, rust-resistant kitchen metal surfaces as an example. “At the nanoscale, this rusting—or oxidation, as it’s called—is difficult to stop. By synthesizing stainless interfaces, we hope to better protect nanoparticles from oxidation.”

An alloy is a mixture of metals whose properties are different from those of its individual elements. When carbon is added to iron, the result is steel that is strong and hard. Mix in chromium and nickel, and the steel becomes stainless, or rust-proof.

Maye’s work utilizes nanoparticles that contain iron cores and thin shells, the latter of which are made up of chromium, nickel, aluminum or titanium. He has developed the chemistry to produce these materials, which are then exposed to heat and oxygen, allowing for control of alloying and oxidation.

Maye says that, like any good project, the new materials’ properties were discovered by taking a novel approach.

“Our preliminary studies showed that a nanometer-thin layer of oxide can be used to protect the nanoparticle, while providing a new mechanism to control nanoparticle structure and reactivity,” says Maye, whose research team includes postdoctoral fellows, as well as graduate and undergraduate students. “As a result, we can make atomic to nanoscale voids, which are holes in the particle about the size of a molecule. These voids can be used to trap and store gas, such as carbon dioxide, and to serve as electrodes in lithium-ion batteries.”

Maye says the goal of the NSF project is three-fold: to develop “wet-chemical” synthesis strategies to prepare the alloy nanomaterials; to understand their oxidation and phase behavior; and to use such behavior to construct novel structures.

“We’re really excited about NSF’s support,” he says. “The grant allows my team to prepare materials that have not been made before and to uncover important fundamental science related to nano alloys.”

In addition to underwriting research, the NSF grant will serve a broader impact by supporting an annual workshop that brings together regional leaders in nanoscience. The first such “Upstate Nano” workshop will take place next summer at Syracuse University.

“There is some tremendous nanoparticle research going on in the region,” Maye says. “The workshop will enable creative researchers to discuss ideas, while exposing students to the novel science and great potential of our field.”

  • Author

Rob Enslin

  • Recent
  • Syracuse Stage Opens Season With Production of WWI Musical ‘The Hello Girls’
    Monday, September 15, 2025, By Joanna Penalva
  • Empowering Supervisors Through Communication and Leadership Skills: Crucial Conversations and Crucial Influence Return This Fall
    Monday, September 15, 2025, By News Staff
  • Renée Crown University Honors Program Launches New Tradition
    Monday, September 15, 2025, By News Staff
  • Institutional Research Team Joins Office of Institutional Effectiveness
    Monday, September 15, 2025, By Wendy S. Loughlin
  • Professor Shikha Nangia Named as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering
    Friday, September 12, 2025, By Emma Ertinger

More In STEM

Professor Shikha Nangia Named as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering

The College of Engineering and Computer Science (ECS) has announced the appointment of Shikha Nangia as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering. Made possible by a gift from the late Milton and Ann Stevenson,…

Celebrating a Decade of Gravitational Waves

Ten years ago, a faint ripple in the fabric of space-time forever changed our understanding of the Universe. On Sept. 14, 2015, scientists at the Laser Interferometer Gravitational-Wave Observatory (LIGO) made the first direct detection of gravitational waves—disturbances caused by the…

Quiet Campus, Loud Impact: Syracuse Research Heats Up Over Summer

While summer may bring a quiet calm to the Quad, the drive to discover at Syracuse University never rests. The usual buzz of students rushing between classes may fade, but inside the labs of the College of Arts and Sciences…

Tissue Forces Help Shape Developing Organs

A new study looks at the physical forces that help shape developing organs. Scientists in the past believed that the fast-acting biochemistry of genes and proteins is responsible for directing this choreography. But new research from the College of Arts…

Maxwell’s Baobao Zhang Awarded NSF CAREER Grant to Study Generative AI in the Workplace

Baobao Zhang, associate professor of political science and Maxwell Dean Associate Professor of the Politics of AI, has received a National Science Foundation Faculty Early Career Development (CAREER) Award for $567,491 to support her project, “Future of Generative Artificial Intelligence…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.