Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Making Discoveries on the Smallest of Scales at Jefferson Lab

Monday, July 7, 2014, By Kathleen Haley
Share
Research and Creative
Beminiwattha’s thesis involved the Q-weak experiment at the Jefferson Lab, which includes here the apparatus that contains the proton target and detectors in one of the experiment halls. (Photo: Jefferson Lab)

Beminiwattha’s thesis involved the Q-weak experiment at the Jefferson Lab, which includes here the apparatus that contains the proton target and detectors in one of the experiment halls. (Photo: Jefferson Lab)

Post-doctoral research associate Rakitha Beminiwattha appreciates the irony of the work he does at the Jefferson Lab.

Rakitha Beminiwattha

Rakitha Beminiwattha

The Thomas Jefferson National Accelerator Facility, or Jefferson Lab, in Virginia houses the Continuous Electron Beam Accelerator Facility (CEBAF), a 1.4 kilometer-long, racetrack-shaped machine that propels electrons to nearly the speed of light before striking its target. It is the world’s most advanced electron accelerator for studying the basic elements of the atom’s nucleus. Massive equipment, complex preparations, many collaborators and years of data and analysis searching for discoveries on the smallest of scales.

“What’s fascinating is how you put an experiment together. Then you run it and it’s a really big experiment,” Beminiwattha says. “You build these experiments to measure something you cannot even see.”

Currently stationed at the Jefferson Lab, Beminiwattha has been working under Professor Paul Souder, in the Department of Physics, since May 2013, putting together various components of three research projects in particle physics.

Beminiwattha has conducted research at the Jefferson Lab for several years as a research associate and as part of his studies at Ohio University, where he completed a Ph.D. in nuclear and particle physics last year. His thesis, involving data acquisition, software development and data analysis for a major physics experiment at the lab, was recently recognized by fellow scientists.

Recognized by fellow scientists

Beminiwattha was awarded the 2014 Jefferson Science Associates Thesis Prize during the lab’s Users Group Annual Meeting in June. Members of the users group are scientists from across the United States and from 30 countries who conduct research at the lab, which is operated by Jefferson Science Associates for the U.S. Department of Energy.

His thesis, “First Determination of the Weak Charge of the Proton through Parity Violating Electron Scattering,” was based on his work on a large-installation experiment called Q-weak.

“My data analysis work focused on the extraction of the physics asymmetry from part of the accumulated data and applies background and radiative corrections to obtain the 21 percent measurement of the weak charge of the proton,” Beminiwattha says.

The research involved trying to better understand the structure of the proton using calculations predicted by the Standard Model. The Standard Model theory, which tries to explain how matter is formed, involves the basic particles of matter and three fundamental interacting forces: electromagnetic, weak and strong. The theory, however, doesn’t include the fourth fundamental force, gravity.

“The ultimate goal is if we had one theory that explained everything that we see around us,” Beminiwattha says.

Beminiwattha receiving the asdfasdf Award.

Beminiwattha receiving the 2014 Jefferson Sciences Associates  Thesis Prize.

For the Q-weak experiment, an electron beam generated from the accelerator was sent to one of three separate experiment halls to a liquid hydrogen target. Scientists then measured the scattered electrons from protons in the target to extract information on the proton.

Published work

Beminiwattha was involved in commissioning of the experiment and data taking and analysis. The experiment, which finished in 2012, was published in Physical Review Letters.

His advisors encouraged him to submit his thesis. “Writing a thesis takes a long time and a lot of effort, so it’s really rewarding to receive the recognition for all the hard work you’ve done for the five to six years,” Beminiwattha says.

The prize, awarded for the best Ph.D. student thesis on research related to Jefferson Lab science, includes a $2,500 cash award.

At SU, Beminiwattha, who completed his undergraduate work at the University of Peradeniya in Peradeniya, Sri Lanka, is currently working on background radiation and shielding design for an upcoming experiment, the Lead Radius Experiment (“PREX”).

“We are trying to measure the radius of the neutron using a lead target,” Beminiwattha says. The experiment had an initial run in 2010, but the researchers are seeking more precise measurements and are making improvements to the experiment, including working with engineers to design devices to shield radiation.

“There’s a lot of sensitive electronics and also sometimes people have to go into the experiment hall,” Beminiwattha says. “We have to make sure we don’t reach set limits on radiation.”

He is also working the conceptual designs for two experiments planned to run in the upgraded Continuous Electron Beam Accelerator Facility.

Opening a new window

One set of experiments is based on the Solenoidal Large Intensity Device (SoLID) apparatus, which will provide a precision test on the Standard Model, using measurements from helium and proton targets. The research could open a new window to study Quantum Chromo Dynamics, a theory underlying how nuclei are formed from fundamental particles.

“I’m trying to minimize the background contributions that could affect our final measurements for certain proposed experiments on the SoLID apparatus,” he says.

Beminiwattha meets with Souder once a month and has weekly discussions on the ongoing preparations for the experiments.

“The thing that I like about the lab is you get to work with many different people. You tend to collaborate and do a lot of networking,” Beminiwattha says. “And you learn a lot because there are opportunities to see the many different projects others are working on.”

  • Author

Kathleen Haley

  • Recent
  • DPS Earns Accreditation From International Association of Campus Law Enforcement Administrators
    Friday, June 6, 2025, By Kiana Racha
  • Rock Record Illuminates Oxygen History
    Thursday, June 5, 2025, By Dan Bernardi
  • What Can Ancient Climate Tell Us About Modern Droughts?
    Thursday, June 5, 2025, By News Staff
  • Blackstone LaunchPad Founders Circle Welcomes New Members
    Thursday, June 5, 2025, By Cristina Hatem
  • Syracuse Stage Concludes 2024-25 Season With ‘The National Pastime’
    Wednesday, June 4, 2025, By Joanna Penalva

More In STEM

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

What Can Ancient Climate Tell Us About Modern Droughts?

Climate change is reshaping the global water cycle, disrupting rainfall patterns and putting growing pressure on cities and ecosystems. Some regions are grappling with heavier rainfall and flooding, while others face prolonged droughts that threaten public health, disrupt economies and…

University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy

This month at the All Island Bioeconomy Summit held in Co. Meath, Ireland, it was announced that BiOrbic, Research Ireland Centre for Bioeconomy, comprising 12 leading Irish research universities in Ireland, signed a joint memorandum of understanding (MOU) with the Dynamic Sustainability…

Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science has named Bing Dong as the Traugott Professor of Mechanical and Aerospace Engineering. This endowed professorship is made possible by a 1998 gift from the late Fritz Traugott H’98 and his wife, Frances….

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.