Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Biologist Develops Method for Monitoring Shipping Noise in Dolphin Habitat

Tuesday, December 3, 2013, By Rob Enslin
Share
College of Arts and SciencesResearch and Creative
Biologist Nathan Merchant says underwater noise levels have been increasing over recent decades, disrupting crucial activities for dolphins.

Biologist Nathan Merchant says underwater noise levels have been increasing over recent decades, disrupting crucial activities for dolphins.

A biologist in The College of Arts and Sciences has developed a system of techniques for tracking ships and monitoring underwater noise levels in a protected marine mammal habitat. The techniques are the subject of a groundbreaking article in Marine Pollution Bulletin, focusing on the bottlenose dolphin population in Scotland’s Moray Firth.

Nathan Merchant, a postdoctoral researcher in the Department of Biology, co-authored the article with Enrico Pirotta, Tim Barton and Paul Thompson of The Institute of Biological and Environmental Sciences at the University of Aberdeen (U.K.).

“Underwater noise levels have been increasing over recent decades, due to escalations in human activity,” says Merchant, referring to shipping, pile-driving and seismic surveys. “These changes in the acoustic environment affect marine mammals because they rely on sound as their primary sensory mode. The disturbance caused by this man-made noise can disrupt crucial activities like hunting for food and communication, affecting the fitness of individual animals.”

He adds: “Right now, the million-dollar question is: Does this disturbance lead to changes in population levels of marine mammals? That’s what these long-term studies are ultimately trying to find out.”

The study focuses on the Moray Firth, the country’s largest inlet and home to a population of bottlenose dolphins and various types of seals, porpoises and whales. This protected habitat also houses construction yards that feed Scotland’s ever-expanding offshore wind sector. Projected increases in wind farm construction are expected to bring more shipping through the habitat—something scientists think could have a negative impact on resident marine mammals.

Nathan Merchant

Nathan Merchant

“Different ships emit noise at different levels and frequencies, so it’s important to know which types of vessels are crossing the habitats and migration routes of marine mammals,” says Merchant, who is based in the research lab of Professor Susan Parks, a specialist in the ecology and evolution of acoustic signaling. “The cumulative effect of many noisy ship passages can raise the physiological stress level of marine mammals and affect foraging behavior.”

Due to a lack of reliable baseline data, Merchant and his collaborators at Aberdeen have figured out how to monitor underwater noise levels, using ship-tracking data and shore-based time-lapse photography. (Click here and scroll down for video.) These techniques form a ship-noise assessment toolkit, which Merchant says may be used to study noise from shipping in other habitats.

Parks, for one, is excited about Merchant’s accomplishments. “Nathan has been a great addition to our lab,” she says. “His strengths in signal processing and noise measurements for ship noise have expanded our capabilities. … Underwater noise is a global problem, as major shipping routes connect all of the economies of the world.”

 

  • Author

Rob Enslin

  • Recent
  • Jorge Morales ’26 Named a 2025 Beinecke Scholar
    Friday, June 20, 2025, By News Staff
  • Registration Open for Esports Campus Takeover Hosted by University and Gen.G
    Thursday, June 19, 2025, By Matt Michael
  • 2 Whitman Students Earn Prestigious AWESOME Scholarship
    Tuesday, June 17, 2025, By News Staff
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.