Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

SU Physicist Develops Model for Studying Tissue Pattern Formation

Wednesday, September 25, 2013, By Rob Enslin
Share
College of Arts and SciencesResearch and Creative

Professor Lisa Manning wants to know if embryonic tissue behaves more like a solid or liquid—and why

M. Lisa Manning

M. Lisa Manning

A team of scientists, including M. Lisa Manning, assistant professor of physics in The College of Arts and Sciences, has developed a model for studying tissue—specifically how it organizes into organs and layers during embryonic development.

Their findings are the subject of a Sept. 25 article in the journal Interface (Royal Society Publishing, 2013) and may have major implications for the study of tissue pattern formation and malformation.

Central to their work was the question of whether embryonic tissue behaves more like a solid or a liquid—and why.

“We found that embryonic tissue was viscoelastic, meaning that it behaved like a liquid, if you pushed on it slowly, but like a solid, if you pushed on it quickly,” says Manning, who co-wrote the article with Eva-Maria Schoetz, assistant professor of biology and physics at the University of California, San Diego, and Marcos Lanio and Jared Talbot, both researchers in Princeton University’s Lewis-Sigler Institute for Integrative Genomics. “A mixture of cornstarch and water also behaves that way.”

Manning and her team found that viscoelasticity was the result of “glassy dynamics” in cells, caused by overcrowding. They discovered that cells within embryonic tissue were packed so tightly that they rarely moved—and when they did so, they expended considerable energy to squeeze past their neighbors.

Experimental and simulation data from Manning's experiment, in which two "droplets" of tissue join together, in a fluid-like manner, to form a single tissue

Experimental and simulation data from Manning’s experiment, in which two “droplets” of tissue join together, in a fluid-like manner, to form a single tissue

She compares this behavior to riding on a subway. “If you’re on a subway train that’s not very crowded, it’s easy to move toward the exit and get off the train,” says Manning, an expert in theoretical soft condensed matter and biological physics. “But as more people get on the train, it takes longer to pick your way past them and exit. Sometimes, if the train is jam-packed, you miss your stop completely because you can’t move at all.”

Experimental and simulation data from Manning’s experiment, in which two “droplets” of tissue join together, in a fluid-like manner, to form a single tissue.

Using state-of-the-art imaging and image analysis techniques, Manning and her team saw that each cell was crowded by what she calls a “cage of neighbors.” A simple active-matter model, which they created, has enabled them to reproduce data and make predictions about how certain changes and mutations affect embryonic development.

“This is exciting because if cells slow down or generate more sticky molecules, the tissue can turn into a solid,” says Manning, adding that such alterations can trigger malformations or congenital disease. “Our results provide a framework for understanding these changes.”

Manning’s work is rooted in that of another Princeton scientist, the late Malcolm Steinberg, who suggested more than 50 years ago that different types of embryonic tissue behave like immiscible liquids, such as oil and water. “[This liquid-like behavior] helps tissue separate into layers and form structures, including organs,” says Manning, who joined SU’s faculty in 2011, after serving as a postdoctoral fellow in the Princeton Center for Theoretical Science. “This type of work is fun because it involves knowledge from lots of disciplines, from soft-matter physics and materials science to cell and developmental biology.”

 

 

  • Author

Rob Enslin

  • Recent
  • NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered
    Wednesday, July 16, 2025, By Cristina Hatem
  • Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering
    Wednesday, July 16, 2025, By Emma Ertinger
  • Star Scholar: Julia Fancher Earns Second Astronaut Scholarship for Stellar Research
    Wednesday, July 16, 2025, By Kelly Homan Rodoski
  • Traugott Professor of Mechanical and Aerospace Engineering Bing Dong to Present at Prestigious AI Conference
    Wednesday, July 16, 2025, By Emma Ertinger
  • Lender Center Researcher Studies Veterans’ Post-Service Lives, Global Conflict Dynamics
    Tuesday, July 15, 2025, By Diane Stirling

More In STEM

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Star Scholar: Julia Fancher Earns Second Astronaut Scholarship for Stellar Research

Julia Fancher, a rising senior majoring in physics and mathematics in the College of Arts and Sciences (A&S), a logic minor in A&S and a member of the Renée Crown University Honors Program, has been renewed as an Astronaut Scholar for…

Traugott Professor of Mechanical and Aerospace Engineering Bing Dong to Present at Prestigious AI Conference

Professor Bing Dong was recently selected to lead a workshop on artificial intelligence (AI) at NeurIPS, the Conference and Workshop on Neural Information Processing Systems. Founded in 1987, NeurIPS is one of the most prestigious annual conferences dedicated to machine learning and AI research. Dong’s workshop…

6 A&S Physicists Awarded Breakthrough Prize

Our universe is dominated by matter and contains hardly any antimatter, a notion which still perplexes top scientists researching at CERN’s Large Hadron Collider. The Big Bang created equal amounts of matter and antimatter, but now nearly everything—solid, liquid, gas or plasma—is…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.