Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Research Shows Potential for Quasicrystals

Monday, April 1, 2013, By News Staff
Share

Ever since their discovery in 1984, the burgeoning area of research looking at quasiperiodic structures has revealed astonishing opportunities in a number of areas of fundamental and applied research, including applications in lasing and sensing. Quasiperiodic structures, or quasicrystals, because of their unique ordering of atoms and a lack of periodicity, possess remarkable crystallographic, physical and optical properties not present in regular crystals. In the article “Optics of photonic quasicrystals,” in the March issue of Nature Photonics, Amit Agrawal, professor in the Syracuse University College of Engineering and Computer Science along with his colleagues from the University of Utah present the history of quasicrystals and how this area can open up numerous opportunities in fundamental optics research including possibilities for building smaller optical circuits, performing lithography at a much smaller length scale and making more efficient optical devices that can be used for biosensing, solar cells or spectroscopy applications.

Up until their discovery, researchers including crystallographers, material scientists, physicists and engineers, only focused around two kinds of structures: periodic (e.g. a simple cubic lattice) and random (e.g. amorphous solids such as glass). Periodic structures are known for their predictable symmetry, both rotational and translational, and they were believed to be the only kinds of repeating structures that could occur in nature. From basic solid state physics, these structures are only allowed to exhibit strict 2, 3, 4 or 6-fold rotational symmetry, i.e., upon rotation by a certain angle about a crystallographic axis, the shape would still look identical upon each rotation. It was not believed that there could be a structure that existed which violated these four symmetry rules. Random systems, the other big area of research, looks at amorphous or disordered media like gases.
The introduction of quasicrystals – an ordered structure that lacks periodicity, exhibits some properties similar to periodic structures (such as atomic ordering over large-length scales) while violates rotational symmetry rules associated with them (i.e., a quasicrystal can exhibit 5 or 8 fold rotational symmetry) – was an area initially met with resistance from the research community. Agrawal explores this transition from skepticism to the ultimate acceptance by a growing number of researchers exploring the potential of these unique structures.

quasicrystal

Figure Caption: Two-dimensional Penrose type quasicrystal made using only two tile shapes: a thick rhomb and a thin rhomb. The structure proposed by Roger Penrose lacks translational symmetry and exhibits five-fold rotational symmetry not allowed in regular crystals.

  • Author

News Staff

  • Recent
  • Take Back The Night 2023: It’s More Than a Night, It’s for a Lifetime
    Monday, March 20, 2023, By News Staff
  • Your Participation Can Boost the ’Cuse
    Monday, March 20, 2023, By Shaina M. Hill
  • Winners Announced in Graduate Dean’s Research and Creative Works Competition
    Monday, March 20, 2023, By Diane Stirling
  • Internship Funding Award Empowers Students to Experience
    Monday, March 20, 2023, By News Staff
  • Newhouse Postdoctoral Scholar to Co-Lead Summer Institute
    Thursday, March 16, 2023, By Madelyn Geyer

More In STEM

Rare Isotopes Help Unlock Mysteries in the Argentine Andes

Every second the Earth is bombarded by vast amounts of cosmic rays—invisible sub-atomic particles that originate from things like the sun and supernova explosions. These high-energy, far-traveled cosmic rays collide with atoms as they enter Earth’s atmosphere and set off…

SyracuseCoE Faculty Fellows Program 2023 Call for Proposals: Research and Technology Seed Funding Available

SyracuseCoE is seeking applications for its 2023 Faculty Fellows program. Proposals are invited from faculty researchers for innovative research and development efforts in SyracuseCoE’s focus areas: Healthy and efficient buildings Clean energy Resilient, low carbon communities Funding amounts of up…

ECS Students Attend the 2023 Lockheed Martin Ethics in Engineering Competition

Engineering and Computer Science (ECS) students Eric Silfies ’23, Brady Arruda ’25, Oliver Raycroft ’25, Max Lipinski ’24 and Mechanical and Aerospace Engineering Professor Alex Deyhim recently visited the Lockheed Martin (LM) Center for Leadership Excellence in Bethesda, Maryland, for…

Rock-Solid Data: Friendship Helps Lead to Discovery of Tectonic History of Subglacial Antarctica

A trove of ancient rocks collected from glacial moraines has literally revealed the deep story of one of the most underexplored environments on the planet—the rocks and mountain belts hidden beneath the East Antarctica Ice Sheet. Before this study, scientists…

Engineered Magic: Wooden Seed Carriers Mimic the Behavior of Self-Burying Seeds

Before a seed can grow into a tree, flower or plant, it needs to successfully implant itself in soil—a delicate and complex process. Seeds need to be able to take root and then remain protected from hungry birds and harsh…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2023 Syracuse University News. All Rights Reserved.