Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

For sperm, faster isn’t always better

Wednesday, August 1, 2012, By News Staff
Share
College of Arts and SciencesResearch and Creative

New study by Syracuse University scientists uncovers a reproduction conundrum

spermWhen it comes to sperm meeting eggs in sexual reproduction, conventional wisdom holds that the fastest swimming sperm are most likely to succeed in their quest to fertilize eggs. That wisdom was turned upside down in a new study of sperm competition in fruit flies (Drosophila melanogaster), which found that slower and/or longer sperm outcompete their faster rivals.

The study, recently published online in Current Biology and forthcoming in print on Sept. 25, was done by a team of scientists led by corresponding author Stefan Lüpold, a post-doctoral researcher in the Department of Biology in the College of Arts and Sciences. The team made the discovery using fruit flies that were genetically altered so that the heads of their sperm glow fluorescent green or red under the microscope. The fruit flies, developed by biology Professor John Belote, enable researchers to observe sperm in real time inside the female reproductive tract.

“Sperm competition is a fundamental biological process throughout the animal kingdom, yet we know very little about how ejaculate traits determine which males win contests,” says Lüpold, a Swiss National Science Foundation Fellow working in the laboratory of biology Professor Scott Pitnick. “This is the first study that actually measures sperm quality under competitive conditions inside the female, allowing us to distinguish the traits that are important in each of the reproductive phases.”

The research is also significant because the scientists studied naturally occurring variations in sperm traits, rather than manipulating the test populations for specific traits. After identifying and isolating groups of males with similar ejaculate traits that remained constant across multiple generations, the scientists mated single females with pairs of males from the different groups. “This approach allowed us to simultaneously investigate multiple ejaculate traits and also observe how sperm from one male change behavior depending upon that of rival sperm,” Lüpold says.

Female fruit flies mate about every three days. Sperm from each mating swim through the female bursa into a storage area until eggs are released. Eggs travel from the ovaries into the bursa to await the sperm. However, sperm battles actually take place within the storage area. After each mating, new sperm try to toss sperm from previous matings out of storage. The female then ejects the displaced sperm from the reproductive system, eliminating the ejected sperm from the mating game. The researchers observed that longer and slower-moving sperm were better at displacing their rivals and were also less likely to be ejected from storage than their more agile counterparts.

“The finding that longer sperm were more successful is consistent with earlier studies,” Lüpold says. “However, the finding that slower sperm also have an advantage is counterintuitive.”

Why slower sperm have an advantage is still open to speculation. “It could be that, when swimming back and forth in storage, slower sperm hit the exit less frequently and are therefore less likely to be pushed out,” Lüpold says. “Or, because sperm velocity is dependent on the density of sperm within the narrow storage area, it could be that velocity isn’t really the target of sexual selection in fruit flies, but is rather a consequence of the amount of sperm packed into the storage organ.”

The U.S. National Science Foundation (NSF) and the Swiss National Science Foundation funded the study.

  • Author

News Staff

  • Recent
  • Auxiliary Services Announces Next Steps in Office Refreshment, Vending Transitions
    Thursday, August 14, 2025, By Jennifer DeMarchi
  • Whitman School Names Julie Niederhoff as Chair of Marketing Department
    Wednesday, August 13, 2025, By Caroline K. Reff
  • Syracuse Stage Announces Auditions for 2025-26 Theatre for the Very Young Production ‘Tiny Martians, Big Emotions’
    Wednesday, August 13, 2025, By Joanna Penalva
  • 5 Things to Know About New Student Convocation Speaker Andrea-Rose Oates ’26
    Wednesday, August 13, 2025, By John Boccacino
  • Art Museum Launches Fall 2025 Season With Dynamic, Interdisciplinary Exhibitions
    Tuesday, August 12, 2025, By Taylor Westerlund

More In STEM

New Study Reveals Ozone’s Hidden Toll on America’s Trees

A new nationwide study reveals that ozone pollution—an invisible threat in the air—may be quietly reducing the survival chances of many tree species across the United States. The research, published in the Journal of Geophysical Research: Atmospheres is the first…

Inspiring the Next Generation of STEM Enthusiasts

A friendly competition is brewing in the corner of a basement classroom in Link Hall during the annual STEM Trekkers summer program, where students are participating in a time-honored ritual: seeing who can build a paper airplane that travels the…

5 Surprisingly Simple Ways to Use Generative Artificial Intelligence at Work

Not too long ago, generative artificial intelligence (AI) might’ve sounded like something out of a sci-fi movie. Now it’s here, and it’s ready to help you write emails, schedule meetings and even create presentations. In a recent Information Technology Services…

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.