Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Addressing the challenge of persister cells in bacterial infections

Tuesday, September 13, 2011, By News Staff
Share
College of Engineering and Computer ScienceResearch and Creative

How antimicrobial peptides may offer an answer to challenging problem

Dacheng Ren, assistant professor in the Department of Biomedical and Chemical Engineering in Syracuse University’s L.C. Smith College of Engineering and Computer Science (LCS) and member of the Syracuse Biomaterials Institute, has published a paper based on his research into how antimicrobial peptides may be able to aid in addressing the challenge posed by bacterial persister cells. His work was published in the July issue of Applied and Environmental Microbiology.

renPersister cells, similar to spores, are a small portion of a microbial population that is dormant. Inherent in bacterial populations, it is believed that they play important roles in chronic infections like tuberculosis, persistent fungal infections and lung infections in cystic fibrosis patients. The dormant properties of these persister cells make them tolerant to almost all antibiotics. Therefore, infections can reoccur once a person stops antibiotic treatment since the bacteria can regrow from the persister cells and attack again.

Currently, there are no clinically proven treatments for killing persister cells. Working with New York University chemistry professor Neville R. Kallenbach, Ren began looking at anti-microbial peptides (AMP) as a potential solution to targeting these cells. AMPs target cells regardless of whether they are dormant, and Ren was able to demonstrate that some AMPs are very effective at attacking persister cells, both the free-swimming ones and those attached to surfaces (in biofilms).

The team also found a synergy between the use of antibiotics and AMPs to effectively eliminate dormant persister cells. Ren found that the use of AMPs reduced persister cells’ tolerance to antibiotic treatment. “We are inspired by these results and encouraged about potential new approaches to control persistent infections,” says Ren.

The research team also consists of LCS graduate students Xi Chen and Mi Zhang and NYU graduate student Chunhui Zhou.

  • Author

News Staff

  • Recent
  • Syracuse Stage Opens Season With Production of WWI Musical ‘The Hello Girls’
    Monday, September 15, 2025, By Joanna Penalva
  • Empowering Supervisors Through Communication and Leadership Skills: Crucial Conversations and Crucial Influence Return This Fall
    Monday, September 15, 2025, By News Staff
  • Renée Crown University Honors Program Launches New Tradition
    Monday, September 15, 2025, By News Staff
  • Institutional Research Team Joins Office of Institutional Effectiveness
    Monday, September 15, 2025, By Wendy S. Loughlin
  • University Partnering With CXtec, United Way on Electronic Upcycle Event
    Friday, September 12, 2025, By John Boccacino

More In STEM

Professor Shikha Nangia Named as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering

The College of Engineering and Computer Science (ECS) has announced the appointment of Shikha Nangia as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering. Made possible by a gift from the late Milton and Ann Stevenson,…

Celebrating a Decade of Gravitational Waves

Ten years ago, a faint ripple in the fabric of space-time forever changed our understanding of the Universe. On Sept. 14, 2015, scientists at the Laser Interferometer Gravitational-Wave Observatory (LIGO) made the first direct detection of gravitational waves—disturbances caused by the…

Quiet Campus, Loud Impact: Syracuse Research Heats Up Over Summer

While summer may bring a quiet calm to the Quad, the drive to discover at Syracuse University never rests. The usual buzz of students rushing between classes may fade, but inside the labs of the College of Arts and Sciences…

Tissue Forces Help Shape Developing Organs

A new study looks at the physical forces that help shape developing organs. Scientists in the past believed that the fast-acting biochemistry of genes and proteins is responsible for directing this choreography. But new research from the College of Arts…

Maxwell’s Baobao Zhang Awarded NSF CAREER Grant to Study Generative AI in the Workplace

Baobao Zhang, associate professor of political science and Maxwell Dean Associate Professor of the Politics of AI, has received a National Science Foundation Faculty Early Career Development (CAREER) Award for $567,491 to support her project, “Future of Generative Artificial Intelligence…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.