Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

SU physicist aids in discovery of predicting breaking points in disordered solids

Thursday, September 8, 2011, By News Staff
Share
College of Arts and SciencesResearch and Creative

In solid materials with regular atomic structures, figuring out where the material will break under stress is relatively easy. But for disordered solids, like glass or sand, their disordered structure makes such predictions a more daunting task.

breakingpointA collaboration of researchers has combined a theoretical model with a first-of-its kind experiment to demonstrate a novel method for identifying “soft spots” in such materials. The findings of physicists from Syracuse University and the University of Pennsylvania, which are published online in separate studies in Physical Review Letters, may lead to a better understanding of the principles that govern the responses of materials under stress, ranging from failure of glass to earthquakes and avalanches.

Lisa Manning, newly appointed to the Physics Department in SU’s College of Arts and Sciences, described the theoretical model with Andrea J. Liu, professor of physics in Penn’s School of Arts and Sciences. Manning’s work on the study was done while she was a postdoctoral fellow at Princeton University’s Center for Theoretical Science. Professor Arjun G. Yodh of the University of Pennsylvania led the team that did the experimental research.

For materials with well-ordered, crystalline internal structures, such as diamonds or most metals, identifying soft spots is easy; weak, disordered sections stick out like a sore thumb, the researchers say.

“In perfect crystalline materials, atoms are in well-defined positions,” Yodh says. “If you give me the position of one atom, I can tell you the position of another with precision. There’s also a well defined theory about what’s happening with defects in crystals when stresses are applied to them.”

The same is not true for disordered solids, such as glass and sand. With physical structure a dead end for identifying soft spots in disordered solids, the physicists turned to another property: vibration. Particles that make up solid matter are constantly vibrating. And like the different tones of guitar strings, particles vibrate in many different ways, known as “vibration modes.”

For crystalline materials, the regular patterns of atoms lead to uniform patterns of vibrations. In contrast, with disordered materials, particles in different regions vibrate differently, producing some new and different vibration modes, particularly at low frequencies.

Manning and Liu developed a simulation to test this kind of correlation under idealized conditions. They were able to show that certain regions highlighted by low-frequency vibration modes acted like defects in disorganized materials and that these defects were good candidates for where the material would fail under stress.

“We showed, for the first time, a correlation between the soft spot population and rearrangements under stress,” Manning says. “This is something people have been looking for over the past 30 or 40 years.”

Though the success of the simulation was an exciting result by itself, it was only a first step. Real-world systems have additional layers of complexity, notably temperature and related thermal fluctuations that can rapidly change the interactions between neighboring particles and thus the system’s vibrational patterns.

“It was not at all obvious that the soft spots we found in the simulation would still exist in the presence of thermal fluctuations, which are unavoidable in the real world,” Liu says. “Thermal fluctuations, for example, might have caused the soft spots to be wiped out too rapidly to be used for analysis.”

To see if this was the case, Yodh’s research team developed a novel way to test the findings of the simulation. At the core of the experiment was a colloidal glass, an effectively two-dimensional material consisting of a single disordered layer of soft plastic particles packed tightly together.

By analyzing video of the particles’ motion in the colloidal glass as observed under a microscope, the researchers calculated the vibrational patterns and then used Manning and Liu’s model to locate regions vulnerable to rearrangement once the glass was put under stress. They found a consistency between the weak spots predicted by the model and that which was found in the experiment. The experiment thus provides a new basis—low frequency vibration modes—for analyzing real-world disordered solids. Disordered solids are much more common than ordered ones, so having a working theory of how, why and where they break has many potential applications.

“You can bend a metal spoon, but you can’t bend one made out of glass without breaking it. If you can understand how disordered solids fail, you might be able to make them tougher,” Yodh says.

The research was funded by the National Science Foundation, the Penn Materials Research Science and Engineering Center, Princeton’s Center for Theoretical Science, NASA and the U.S. Department of Energy.

Editor’s Note: The information below was provided by Pennsylvania State University Science News Officer Evan Lerner

  • Author

News Staff

  • Recent
  • What’s New at Campus Dining in Fall 2025?
    Friday, August 29, 2025, By Jennifer DeMarchi
  • DPS Pilots License Plate Reader Technology to Enhance Campus Safety
    Friday, August 29, 2025, By Kiana Racha
  • IDJC Welcomes Fall 2025 Visiting Fellows Nathaniel Rakich and Miranda Spivack
    Friday, August 29, 2025, By Genaro Armas
  • Libraries Announces Fall 2025 Workshops
    Friday, August 29, 2025, By Cristina Hatem
  • Maxwell’s Baobao Zhang Awarded NSF CAREER Grant to Study Generative AI in the Workplace
    Friday, August 29, 2025, By Jessica Youngman

More In STEM

Maxwell’s Baobao Zhang Awarded NSF CAREER Grant to Study Generative AI in the Workplace

Baobao Zhang, associate professor of political science and Maxwell Dean Associate Professor of the Politics of AI, has received a National Science Foundation Faculty Early Career Development (CAREER) Award for $567,491 to support her project, “Future of Generative Artificial Intelligence…

Discovering How and When Stuff Fails Leads to NSF Grant

When materials are forced into new shapes, a tipping point can shift them from flexibility and resilience to failing or breaking. Understanding that tipping point is at the core of Jani Onninen’s research. He has received a three-year grant from…

A&S Scientists Explore Protein Droplets as a New Way to Understand Disease

When we are young and healthy, our cells successfully monitor and manage our worn-out or damaged proteins, keeping things working properly. But as we age, this cleanup system can falter, leading to protein clumps linked to neurodegenerative diseases such as…

New Study Reveals Ozone’s Hidden Toll on America’s Trees

A new nationwide study reveals that ozone pollution—an invisible threat in the air—may be quietly reducing the survival chances of many tree species across the United States. The research, published in the Journal of Geophysical Research: Atmospheres is the first…

Inspiring the Next Generation of STEM Enthusiasts

A friendly competition is brewing in the corner of a basement classroom in Link Hall during the annual STEM Trekkers summer program, where students are participating in a time-honored ritual: seeing who can build a paper airplane that travels the…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.