Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

SU physicist aids in discovery of predicting breaking points in disordered solids

Thursday, September 8, 2011, By News Staff
Share
College of Arts and SciencesResearch and Creative

In solid materials with regular atomic structures, figuring out where the material will break under stress is relatively easy. But for disordered solids, like glass or sand, their disordered structure makes such predictions a more daunting task.

breakingpointA collaboration of researchers has combined a theoretical model with a first-of-its kind experiment to demonstrate a novel method for identifying “soft spots” in such materials. The findings of physicists from Syracuse University and the University of Pennsylvania, which are published online in separate studies in Physical Review Letters, may lead to a better understanding of the principles that govern the responses of materials under stress, ranging from failure of glass to earthquakes and avalanches.

Lisa Manning, newly appointed to the Physics Department in SU’s College of Arts and Sciences, described the theoretical model with Andrea J. Liu, professor of physics in Penn’s School of Arts and Sciences. Manning’s work on the study was done while she was a postdoctoral fellow at Princeton University’s Center for Theoretical Science. Professor Arjun G. Yodh of the University of Pennsylvania led the team that did the experimental research.

For materials with well-ordered, crystalline internal structures, such as diamonds or most metals, identifying soft spots is easy; weak, disordered sections stick out like a sore thumb, the researchers say.

“In perfect crystalline materials, atoms are in well-defined positions,” Yodh says. “If you give me the position of one atom, I can tell you the position of another with precision. There’s also a well defined theory about what’s happening with defects in crystals when stresses are applied to them.”

The same is not true for disordered solids, such as glass and sand. With physical structure a dead end for identifying soft spots in disordered solids, the physicists turned to another property: vibration. Particles that make up solid matter are constantly vibrating. And like the different tones of guitar strings, particles vibrate in many different ways, known as “vibration modes.”

For crystalline materials, the regular patterns of atoms lead to uniform patterns of vibrations. In contrast, with disordered materials, particles in different regions vibrate differently, producing some new and different vibration modes, particularly at low frequencies.

Manning and Liu developed a simulation to test this kind of correlation under idealized conditions. They were able to show that certain regions highlighted by low-frequency vibration modes acted like defects in disorganized materials and that these defects were good candidates for where the material would fail under stress.

“We showed, for the first time, a correlation between the soft spot population and rearrangements under stress,” Manning says. “This is something people have been looking for over the past 30 or 40 years.”

Though the success of the simulation was an exciting result by itself, it was only a first step. Real-world systems have additional layers of complexity, notably temperature and related thermal fluctuations that can rapidly change the interactions between neighboring particles and thus the system’s vibrational patterns.

“It was not at all obvious that the soft spots we found in the simulation would still exist in the presence of thermal fluctuations, which are unavoidable in the real world,” Liu says. “Thermal fluctuations, for example, might have caused the soft spots to be wiped out too rapidly to be used for analysis.”

To see if this was the case, Yodh’s research team developed a novel way to test the findings of the simulation. At the core of the experiment was a colloidal glass, an effectively two-dimensional material consisting of a single disordered layer of soft plastic particles packed tightly together.

By analyzing video of the particles’ motion in the colloidal glass as observed under a microscope, the researchers calculated the vibrational patterns and then used Manning and Liu’s model to locate regions vulnerable to rearrangement once the glass was put under stress. They found a consistency between the weak spots predicted by the model and that which was found in the experiment. The experiment thus provides a new basis—low frequency vibration modes—for analyzing real-world disordered solids. Disordered solids are much more common than ordered ones, so having a working theory of how, why and where they break has many potential applications.

“You can bend a metal spoon, but you can’t bend one made out of glass without breaking it. If you can understand how disordered solids fail, you might be able to make them tougher,” Yodh says.

The research was funded by the National Science Foundation, the Penn Materials Research Science and Engineering Center, Princeton’s Center for Theoretical Science, NASA and the U.S. Department of Energy.

Editor’s Note: The information below was provided by Pennsylvania State University Science News Officer Evan Lerner

  • Author

News Staff

  • Recent
  • Tiffany Xu Named Harry der Boghosian Fellow for 2025-26
    Friday, June 20, 2025, By Julie Sharkey
  • Registration Open for Esports Campus Takeover Hosted by University and Gen.G
    Thursday, June 19, 2025, By Matt Michael
  • 2 Whitman Students Earn Prestigious AWESOME Scholarship
    Tuesday, June 17, 2025, By News Staff
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.