Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Patent awarded for ‘method and system of controlling airfoil actuators’

Wednesday, September 7, 2011, By News Staff
Share
College of Engineering and Computer ScienceResearch and Creative

Syracuse University has been awarded a patent for the development of a “Method and System of Controlling Airfoil Actuators.” This research will lead to greater maneuverability options for wing design on airplanes and is being considered for applications to wind turbine research. Mark Glauser, professor of mechanical and aerospace engineering (MAE) and associate dean for research and doctoral programs in the L.C. Smith College of Engineering and Computer Science, and MAE professor Hiroshi Higuchi co-led this project. This patent in closed-loop flow control has potential to inform numerous applications that require enhanced lift or are impacted by fatigue due to unsteady flow.

The goal of the research was to focus on creating opportunities for enhancing lift and reducing fatigue due to unsteady aerodynamic loads on an airfoil through making intelligent observations from changing wing surface conditions. Glauser and Higuchi worked on testing an intelligent airfoil design that would be able to sense changes in airflow over an airfoil’s surface, make inferences about airflow conditions around the airfoil and make adjustments to the airfoil through the use of actuators.

Glauser and Higuchi began by placing pressure sensors along the chord of an airfoil and collected data to make observations about how airflow conditions affected the wing. Rather than utilizing conventional flaps as seen on many airplane wings, they used synthetic jets, small actuators that expel or take in air to change airfoil surface conditions, distributed in span near the leading edge of the airfoil, to make changes to the airfoil’s performance in the face of changing airflow conditions as sensed by the unsteady airfoil surface measurements.

“It is really quite gratifying to see this basic research, originally funded by the U.S. Air Force Office of Scientific Research, evolve to the point where the technology can positively impact actual aerospace vehicles, as well as its potential for dual use in the renewable energy sector with application to the next generation of wind turbines,’’ says Glauser.

Current wind turbine design does not allow for relatively fast adjustments to changing weather conditions, which leads to accelerated fatigue and degradation of system components. In his current research utilizing sensors and actuators, Glauser has observed opportunities to improve turbine performance and reduce unsteady loads by up to 15 percent by testing a scaled model turbine blade inside a wind tunnel. Next steps will be to test this technology at close to full-scale conditions and such experiments are being conducted in conjunction with the University of Minnesota through support from the Department of Energy.

Applying this sensor/actuator design to various aerospace vehicles exposed to highly unsteady flows will, for example, lead to greater maneuverability of aircraft and reduction of unsteady loads on turrets and aircraft landing gear. Research in this area is currently being funded by the Department of Defense.

  • Author

News Staff

  • Recent
  • Forecasting the Future With Fossils
    Sunday, June 8, 2025, By Caroline K. Reff
  • DPS Earns Accreditation From International Association of Campus Law Enforcement Administrators
    Friday, June 6, 2025, By Kiana Racha
  • Rock Record Illuminates Oxygen History
    Thursday, June 5, 2025, By Dan Bernardi
  • What Can Ancient Climate Tell Us About Modern Droughts?
    Thursday, June 5, 2025, By News Staff
  • Blackstone LaunchPad Founders Circle Welcomes New Members
    Thursday, June 5, 2025, By Cristina Hatem

More In STEM

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

What Can Ancient Climate Tell Us About Modern Droughts?

Climate change is reshaping the global water cycle, disrupting rainfall patterns and putting growing pressure on cities and ecosystems. Some regions are grappling with heavier rainfall and flooding, while others face prolonged droughts that threaten public health, disrupt economies and…

University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy

This month at the All Island Bioeconomy Summit held in Co. Meath, Ireland, it was announced that BiOrbic, Research Ireland Centre for Bioeconomy, comprising 12 leading Irish research universities in Ireland, signed a joint memorandum of understanding (MOU) with the Dynamic Sustainability…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.