Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Patent awarded for ‘method and system of controlling airfoil actuators’

Wednesday, September 7, 2011, By News Staff
Share
College of Engineering and Computer ScienceResearch and Creative

Syracuse University has been awarded a patent for the development of a “Method and System of Controlling Airfoil Actuators.” This research will lead to greater maneuverability options for wing design on airplanes and is being considered for applications to wind turbine research. Mark Glauser, professor of mechanical and aerospace engineering (MAE) and associate dean for research and doctoral programs in the L.C. Smith College of Engineering and Computer Science, and MAE professor Hiroshi Higuchi co-led this project. This patent in closed-loop flow control has potential to inform numerous applications that require enhanced lift or are impacted by fatigue due to unsteady flow.

The goal of the research was to focus on creating opportunities for enhancing lift and reducing fatigue due to unsteady aerodynamic loads on an airfoil through making intelligent observations from changing wing surface conditions. Glauser and Higuchi worked on testing an intelligent airfoil design that would be able to sense changes in airflow over an airfoil’s surface, make inferences about airflow conditions around the airfoil and make adjustments to the airfoil through the use of actuators.

Glauser and Higuchi began by placing pressure sensors along the chord of an airfoil and collected data to make observations about how airflow conditions affected the wing. Rather than utilizing conventional flaps as seen on many airplane wings, they used synthetic jets, small actuators that expel or take in air to change airfoil surface conditions, distributed in span near the leading edge of the airfoil, to make changes to the airfoil’s performance in the face of changing airflow conditions as sensed by the unsteady airfoil surface measurements.

“It is really quite gratifying to see this basic research, originally funded by the U.S. Air Force Office of Scientific Research, evolve to the point where the technology can positively impact actual aerospace vehicles, as well as its potential for dual use in the renewable energy sector with application to the next generation of wind turbines,’’ says Glauser.

Current wind turbine design does not allow for relatively fast adjustments to changing weather conditions, which leads to accelerated fatigue and degradation of system components. In his current research utilizing sensors and actuators, Glauser has observed opportunities to improve turbine performance and reduce unsteady loads by up to 15 percent by testing a scaled model turbine blade inside a wind tunnel. Next steps will be to test this technology at close to full-scale conditions and such experiments are being conducted in conjunction with the University of Minnesota through support from the Department of Energy.

Applying this sensor/actuator design to various aerospace vehicles exposed to highly unsteady flows will, for example, lead to greater maneuverability of aircraft and reduction of unsteady loads on turrets and aircraft landing gear. Research in this area is currently being funded by the Department of Defense.

  • Author

News Staff

  • Recent
  • Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering
    Sunday, May 18, 2025, By Alex Dunbar
  • Summer Snacking: What to Try on Campus
    Sunday, May 18, 2025, By Jennifer DeMarchi
  • ’Cuse Collections Items Donated to Community Through Local Organizations
    Sunday, May 18, 2025, By Lydia Krayenhagen
  • Falk College Sport Analytics Students Win Multiple National Competitions
    Friday, May 16, 2025, By Cathleen O'Hare
  • Physics Professor Honored for Efforts to Improve Learning, Retention
    Friday, May 16, 2025, By Sean Grogan

More In STEM

Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science has named Bing Dong as the Traugott Professor of Mechanical and Aerospace Engineering. This endowed professorship is made possible by a 1998 gift from the late Fritz Traugott H’98 and his wife, Frances….

Physics Professor Honored for Efforts to Improve Learning, Retention

The Department of Physics in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

ECS Team Takes First Place in American Society of Civil Engineers Competition

Civil and environmental engineering student teams participated in the American Society of Civil Engineers (ASCE) Sustainable Solutions and Steel Bridge competitions during the 2025 Upstate New York-Canada Student Symposium, winning first place in the Sustainable Solutions competition. The symposium was…

Chloe Britton Naime Committed to Advocating for Improved Outcomes for Neurodivergent Individuals

Chloe Britton Naime ’25 is about to complete a challenging and rare dual major program in both mechanical engineering from the College of Engineering and Computer Science and neuroscience from the College of Arts and Sciences. Even more impressive? Britton…

Graduating Research Quartet Synthesizes Long-Lasting Friendships Through Chemistry

When Jesse Buck ’25, Isabella Chavez Miranda ’25, Lucy Olcott ’25 and Morgan Opp ’25 started as student researchers in medicinal chemist Robert Doyle’s lab, they hoped to hone their research skills. It quickly became evident this would be unlike…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.