Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Discovery by LCS’s Sureshkumar may be key to solar energy, smart glass technologies

Monday, August 22, 2011, By News Staff
Share
College of Engineering and Computer Scienceresearch

Radhakrishna Sureshkumar, professor and chair of biomedical and chemical engineering in the L.C. Smith College of Engineering and Computer Science, and professor of physics, has developed a patent-pending robust process to manufacture stable suspensions of metal nanoparticles capable of capturing sunlight. By changing the composition of the suspension, researchers can “dial in” to a given wavelength (color) of the spectrum. The American Institute of Physics published Sureshkumar’s research in Applied Physics Letters in July 2011 and his work will be presented at the SPIE Optics + Photonics conference on Aug. 23.

sureshkumarSureshkumar’s research utilized suspensions containing different types or a mixture of metal nanoparticles capable of interacting with different wavelengths of the visible spectrum through a phenomenon referred to as “plasmon resonance.” When nanoparticles are introduced into a solution, their natural tendency is to agglomerate and settle down to the bottom of the solution, hence, such suspensions are inherently unstable. This key challenge was overcome by Sureshkumar and colleagues by employing micelle fragments to act as bridges between nanoparticles, thus holding them in place.

Along with LCS graduate students Tao Cong, Satvik Wani and Peter Paynter, Sureshkumar worked with Brookhaven National Laboratory’s Center for Functional Nanomaterials to characterize the nano-suspensions using small angle x-ray scattering (SAXS) experiments to confirm their ability to create optimal nanoparticle dispersions with tunable optical properties.

“Several applications for this research can be envisioned within the energy field. For instance, the suspensions could be used as precursors to create coatings that improve the light-trapping efficiency of thin film photovoltaic devices. Another application would be in the manufacturing of multifunctional smart glasses for building windows that generate energy from the visible range, while blocking harmful ultraviolet (UV) rays,” says Sureshkumar.

This research was supported by a grant awarded by the National Science Foundation. The team also includes LCS undergraduate students Elia Baszczuk and Georo Zhou, who participate in ongoing research.

  • Author

News Staff

  • Recent
  • Funding Opportunities for Syracuse Abroad Summer 2021 programs
    Wednesday, January 20, 2021, By Ashley Alessandrini
  • College of Law Adds Vincent H. Cohen ’92, L’95 to Board of Advisors
    Wednesday, January 20, 2021, By Martin Walls
  • Students Invited to Network and Skill-Build with Alumni
    Wednesday, January 20, 2021, By Gabrielle Lake
  • ‘Confronting ‘Who We Are”
    Tuesday, January 19, 2021, By News Staff
  • Arts and Sciences Welcomes New Director of Forensics Kathleen Corrado
    Tuesday, January 19, 2021, By Dan Bernardi

More In STEM

Arts and Sciences Welcomes New Director of Forensics Kathleen Corrado

After 25 years working in the field of forensic science and over two decades of executive experience as a laboratory director, Kathleen Corrado has been named director of the Forensic and National Security Science Institute (FNSSI) in the College of…

Hehnly Lab Awarded $1.2M NIH Grant to Research Critical Tissue Formation

A key process during the development of an embryo is tissue morphogenesis, where the number of cells in an organism increase through cell division and tissues begins to take shape. Heidi Hehnly, assistant professor of biology, has been awarded a…

The Role of Digital Forensics and Tracking Down US Capitol Riot Criminals

With just under a week left before President-elect Joe Biden’s inauguration ceremony, investigators and law enforcement agencies across the country are working speedily to identify as many of the Jan. 6 U.S. Capitol riot offenders as they can. Knowing exactly…

A&S Researchers Awarded $2.1M Grant to Study Causes of Congenital Heart Defects

Congenital heart defects are the most common type of birth defect, affecting nearly 1 percent of births in the United States each year, according to the Centers for Disease Control and Prevention. Doctors have been unable to lower that number…

$1.5 Million NIH Grant Funds ALS-Linked Research

The human body is made up of trillions of cells. Within each cell are proteins which help to maintain the structure, function and regulation of the body’s tissues and organs. When cells are under stress, as in response to heat…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2021 Syracuse University News. All Rights Reserved.