Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Syracuse University biologist discovers key regulators for biofilm development

Friday, June 24, 2011, By News Staff
Share
College of Arts and SciencesResearch and Creative

They can be found everywhere—organized communities of bacteria sticking to surfaces both inside and outside the body. These biofilms are responsible for some of the most virulent, antibiotic-resistant infections in humans; however, scientific understanding of how these communities develop is lacking.

biofilmA recent study led by a Syracuse University biologist sheds new light on the process. The scientists discovered that a complex cascade of enhancer binding proteins (EBPs) is responsible for turning on genes that initiate the formation of a biofilm. The study was published June 13 in the Proceedings of the National Academy of Sciences, one of the world’s most-cited multidisciplinary scientific serials. The National Science Foundation is funding the research.

“We’ve discovered a complex regulatory cascade of EBPs that is designed to be highly responsive to environmental signals,” says Anthony Garza, associate professor of biology in SU’s College of Arts and Sciences and corresponding author for the study. “The regulatory circuit we identified is very different from that which has previously been seen.” Garza’s research team includes scientists from the University of Miami School of Medicine, the University of Wisconsin-Madison and Stanford University School of Medicine.

Garza’s team discovered that the regulatory network that signals biofilm development is quite complex and akin to that which is normally found in higher organisms. “Bacterial cells that form biofilms require cooperative behavior similar to cells in more complex organisms,” he says. “We knew EBPs were important in initiating biofilm development, and that there was a connection between EBPs and specific biofilm genes. But we didn’t know how the EBP regulatory circuit was put together.” Garza’s team has also begun to identify the signals that activate the EBP circuitry and the corresponding biofilm genes. Those studies are forthcoming.

The work to uncover how biofilms are genetically initiated is key to developing new ways to prevent and/or treat infected surfaces, Garza says. Bacteria are stimulated to organize into biofilms by several mechanisms, including starvation, high nutrient levels, tissue recognition and quorum or cell-density signaling. Because it takes a lot of energy to organize, bacteria need to be certain conditions are optimal before initiating the biofilm process.

For example, Garza explains, bacterial cells can recognize desirable host tissue, such as lung tissue. Once there, the cells look around to see if enough of their buddies are around to form a biofilm. In this case, both tissue recognition and quorum signaling is at work in initiating the process.

“Unfortunately, biofilms can be up to a thousand times more antibiotic resistant than free-living bacteria,” Garza says. “Once established, biofilms are extremely resistant to killing agents—chemicals, cleaners, antibiotics. The key to preventing their development is in understanding how they get started.”

  • Author

News Staff

  • Recent
  • SCOTUS Win for Combat Veterans Backed by Syracuse Law Clinic
    Monday, June 23, 2025, By Vanessa Marquette
  • Syracuse Views Summer 2025
    Monday, June 23, 2025, By News Staff
  • Tiffany Xu Named Harry der Boghosian Fellow for 2025-26
    Friday, June 20, 2025, By Julie Sharkey
  • Registration Open for Esports Campus Takeover Hosted by University and Gen.G
    Thursday, June 19, 2025, By Matt Michael
  • 2 Whitman Students Earn Prestigious AWESOME Scholarship
    Tuesday, June 17, 2025, By News Staff

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.