Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Syracuse University scientists discover new hitch to link nerve cell motors to their cargo

Wednesday, May 25, 2011, By News Staff
Share
College of Arts and SciencesResearch and Creative

With every bodily movement—from the blink of an eye to running a marathon—nerve cells transmit signals to muscle cells. To do that, nerve cells rely on tiny molecular motors to transport chemical messengers (neurotransmitters) that excite muscles cells into action. It’s a complex process, which scientists are still trying to understand. A new study by Syracuse University researchers has uncovered an important piece of the puzzle. 

The study, published in the April 22 issue of the Journal of Biological Chemistry (JBC), describes the discovery of a protein that is involved in the motor-cargo mechanism that carries neurotransmitter chemicals to the nerve cell’s synapse. The synapse is the junction at which electrical and chemical signals are transmitted from one nerve cell to another cell. JBC is the premier journal of the American Society for Biochemistry and Molecular Biology. 

LangfordThe discovery was made by a team of scientists led by George M. Langford, a cell biologist and dean of SU’s College of Arts and Sciences. Team members included research associate Torsten Wollert and assistant professor Michael Cosgrove in the Department of Biology; and collaborators from Dartmouth College, the Marine Biological Laboratory at Woods Hole, and the McLaughlin Research Institute. The study was funded by the National Institutes of Health. 

“The transportation of neurotransmitter vesicles to the synapse is critical to nerve cell function,” Langford says. “We want to better understand all of the molecular components involved in the transport process. We have discovered another ‘hitch’ that links the motor to its cargo.” 

New insights into how the chemicals are transported could result in new kinds of drug therapy for such illnesses as Parkinson’s disease, depression and injuries to the neuromuscular system, Langford says. 

Neurotransmitters, produced by nerve cells, are used to signal cells in every organ system in the body—from muscles to metabolism. The chemicals are packaged in small sacs called synaptic vesicles. The motors transporting these vesicles are composed of a protein called myosin-Va (Myo5a). Until now, it was not clearly understood how the Myo5a motor attached to the vesicle. In a series of experiments, Langford’s team demonstrated, for the first time, that Myo5a forms a complex with the protein Rab3A, which serves as the ‘hitch’ that snags the synaptic vesicle. 

By understanding how the process works in normal cells, it’s possible for scientists to find ways to turn off a malfunctioning transportation system, Langford says.  For example, over-production of the neurotransmitter dopamine has been linked to depression and other mental illnesses. It may be desirable to develop drugs that prevent dopamine from being transported. Likewise preventing the transportation of muscle-contracting neurotransmitters could ease painful muscle spasms associated with Parkinson’s disease and severe, nervous system injuries.

Langford’s research has been dedicated to understanding how organelles move within cells. He was the first to observe the movement of synaptic vesicles on actin filaments in addition to their previously known transportation on microtubules within nerve cells.  Actin filaments and microtubules are the roads on which the molecular motors transport their cargo. “Think of microtubules as the expressways in the nerve cells and the actin filaments as the local streets,” Langford says. 

In addition to his work on cellular transport mechanisms, Langford is researching ways to produce more effective drugs to treat Candida albicans, a fungus that causes infections in humans.

  • Author

News Staff

  • Recent
  • Co-President of Disability Law Society Eyes Career in National Security Law in Washington
    Thursday, July 31, 2025, By Jordan Bruenger
  • National Grid Summer College Scholars Program Invests in Energy Literacy
    Thursday, July 31, 2025, By Hope Alvarez
  • Lights, Camera, Imagination! Faculty Help Turn Teens’ Ideas Into Films (Video)
    Thursday, July 31, 2025, By Diane Stirling
  • Bowlers Wanted for Faculty and Staff Bowling League
    Thursday, July 31, 2025, By News Staff
  • Lender Center New York Event Gathers Wealth Gap Experts
    Wednesday, July 30, 2025, By Diane Stirling

More In STEM

New Study Reveals Ozone’s Hidden Toll on America’s Trees

A new nationwide study reveals that ozone pollution—an invisible threat in the air—may be quietly reducing the survival chances of many tree species across the United States. The research, published in the Journal of Geophysical Research: Atmospheres is the first…

Inspiring the Next Generation of STEM Enthusiasts

A friendly competition is brewing in the corner of a basement classroom in Link Hall during the annual STEM Trekkers summer program, where students are participating in a time-honored ritual: seeing who can build a paper airplane that travels the…

5 Surprisingly Simple Ways to Use Generative Artificial Intelligence at Work

Not too long ago, generative artificial intelligence (AI) might’ve sounded like something out of a sci-fi movie. Now it’s here, and it’s ready to help you write emails, schedule meetings and even create presentations. In a recent Information Technology Services…

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.