Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • |
  • Alumni
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • Videos
  • Topics
    • Alumni
    • Events
    • Faculty
    • Library
    • Research
    • Students
    • All Topics
  • Contact
  • Submit
STEM

LCS research team shapes cell behavior research

Wednesday, March 9, 2011, By News Staff
Share
College of Engineering and Computer Scienceresearch

A team led by James Henderson, assistant professor of biomedical and chemical engineering in Syracuse University’s L.C. Smith College of Engineering and Computer Science (LCS) and researcher in the Syracuse Biomaterials Institute, has used shape memory polymers to provide greater insight into how cells sense and respond to their physical environment.

hendersonMost cell biomechanics research has examined cell behavior on unchanging, flat surfaces. “Living cells are remarkably complex, dynamic and versatile systems, but the material substrates currently used to culture them are not,” says Henderson (at right in photo). “What motivated our work was the need for cell culture technologies that would allow dynamic control of cell-material interactions. We wanted to give a powerful new tool to biologists and bioengineers.”

The goal of the current research was to develop a temperature-sensitive shape memory polymer substrate that could be programmed to change shape under cell-compatible conditions. Shape memory polymers (SMPs) are a class of “smart” materials that can switch between two shapes on command, from a fixed (temporary) shape to a pre-determined permanent shape, via a trigger such as a temperature change.

The breakthrough needed to achieve the research goal was made by Kevin Davis, a third-year Ph.D. student in the Henderson lab. Davis was able to develop a SMP with a transition temperature that worked within the limited range required for cells to live. He observed greater than 95 percent cell viability before and after topography and temperature change. This is the first demonstration of this type of cell-compatible, programmable topography change. Davis’ and Henderson’s work collaboration with Kelly Burke of Case Western Reserve University and Patrick T. Mather, Milton and Ann Stevenson Professor of Biomedical and Chemical Engineering at Syracuse University, is highlighted in the January issue of the journal Biomaterials, the leading journal in biomaterials research.

After confirming that cells remained viable on the substrate, Davis then investigated the changes in cell alignment on the surface that results from topography change. Davis programmed a SMP substrate that transitioned from a micron-scale grooved surface to a smooth surface. When the cells were seeded on the grooved sample at 30ºC, the cells lined up along the grooves of the surface. The substrates were then placed in a 37ºC incubator, which was the transition temperature for the substrate to recover to a smooth surface. Following shape memory recovery, the cells were observed to be randomly oriented on the substrate.

This research project aimed to determine if cells could remain viable with a change in substrate topography and determine whether cells responded to the change. The next phase of this research is to move from a 2D substrate to a 3D substrate and examine cell viability. Additionally, Henderson’s team will be looking at what is going on inside the cells as a result of topography changes.

The application of shape memory principles offers potential solutions for current limitations of static substrate research in bioengineering research, such as medical devices and tissue engineering scaffolds. “For the first time, we’ve shown that this general concept can be used successfully with cells, which suggests that it can be extended to a number of biomaterials that could be used for scaffolds and many other applications,” says Davis. Since most scaffolding is made out of polymers, Henderson envisions one day using SMPs to create scaffolds that can expand inside the body, allowing for less invasive surgical procedures.

The LCS team of researchers led by Henderson included Davis, Mather, and Burke, a former Ph.D student in Mather’s research group.

  • Author

News Staff

  • Recent
  • Dining Centers to Resume In-Person Dining Monday, April 19, at 11 a.m.
    Sunday, April 18, 2021, By News Staff
  • Libraries Receive Two Access and Digitization Grants
    Sunday, April 18, 2021, By Cristina Hatem
  • Pre-Registration Open for On-Campus Vaccine Clinic
    Friday, April 16, 2021, By News Staff
  • Commencement 2021 Update
    Friday, April 16, 2021, By News Staff
  • Activities for the Weekend of April 15-19 | Submit Proof of Vaccination
    Thursday, April 15, 2021, By News Staff

More In STEM

Bioengineering Ph.D. Student Receives National Recognition for Breakthrough Molecular Computational Tool

Nandhini Rajagopal’s accomplishments are massive even though her research focuses on small molecules. As part of biomedical and chemical engineering Professor Shikha Nangia’s research group, the Ph.D. student has focused her work on minute interactions between protein molecules in the…

New Study From Department of Biology Highlights Ways to Support Students in Virtual Learning Environments

The mass migration to virtual learning that resulted from the COVID-19 pandemic led to a profound change in student learning. While it presented many challenges, it also created opportunities for documenting responses. Two researchers from the Department of Biology in…

Research Computing: A Decade of Discovery on Campus

Do you need more computing power to move your work forward? Since 2011, the Research Computing team within Information Technology Services (ITS) has helped faculty and staff tackle computational challenges beyond the capabilities of a normal desktop or laptop computer. Each…

Engineering Professor Shobha Bhatia Receives 2021 Judith Greenberg Seinfeld Scholar Award

Civil and Environmental Engineering Professor Shobha Bhatia has been honored by Chancellor Kent Syverud with a 2021 Judith Greenberg Seinfeld Scholar award. The award recognizes exceptional creativity and a passion for excellence. It provides $10,000 for Bhatia to undertake an…

Using Syracuse Lava to Understand Metal Worlds

In August 2022, NASA will embark on a space mission to 16 Psyche, a 140-mile diameter giant metal asteroid situated in the asteroid belt between Mars and Jupiter. NASA says it will be the first mission to investigate a planetary…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • Twitter
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • @SUCampus
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2021 Syracuse University News. All Rights Reserved.