Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Syracuse University physicists develop model that pushes limits of quantum theory, relativity

Monday, August 2, 2010, By News Staff
Share
College of Arts and SciencesResearch and Creative

All of the matter in the universe—everything we see, feel and smell—has a certain predictable structure, thanks to the tiny electrons spinning around their atomic nuclei in a series of concentric shells or atomic levels. A fundamental tenet of this orderly structure is that no two electrons can occupy the same atomic level (quantum state) at the same time—a principle called the Pauli exclusion principle, which is based on Albert Einstein’s theory of relativity and quantum theory.

However, a team of Syracuse University physicists recently developed a new theoretical model to explain how the Pauli exclusion principle can be violated and how, under certain rare conditions, more than one electron can simultaneously occupy the same quantum state.

Their model, published July 26 in Physical Review Letters (vol. 105) may help explain how matter behaves at the edges of black holes and contribute to the ongoing scientific quest for a unified theory of quantum gravity. Physical Review Letters is a publication of the prestigious American Physical Society.

“Transitions of electrons from one atomic shell to another that violate the Pauli principle challenge the foundations of physics,” says A.P. Balachandran, the J.D. Steele Professor of Physics in SU’s College of Arts and Sciences. “For this reason, there is strong experimental interest in looking for such transitions. Until now, there were few viable models able to explain how such transitions can occur. Our theory provides such a model.”

Balachandran is the lead author on the paper with Ph.D. candidates Anosh Joseph and Pramod Padmanabhan.

The orderly way in which electrons fill up atomic levels provides stability and structure to matter, as well as dictates the chemical properties of elements on the Periodic Table. Underlying this stability is the ability to pinpoint the location of objects (electrons, protons and neutrons) almost exactly in space and time. The new model posits that at the level where quantum gravity is significant, this picture of space-time continuum breaks down, deeply affecting the rotational symmetry of the atoms and triggering electron transitions (movement from one shell to another) that violate the Pauli principle.

“The Pauli principle is not obeyed in the model we built,” Balachandran says. “We then used existing experimental evidence to put limits on when these violations in transitions can occur.”

According to the model, violations of the Pauli principle would theoretically occur in nature in a time span that is longer than the age of the universe—or less frequently than once in the proverbial “blue moon.”

“Though this effect is small, scientists are using high-precision instruments to try to observe the effect,” Balachandran says. “If found, it will profoundly affect the foundations of the current fundamental physical theories. “

“Additionally, chemistry and biology in a world where such violations occur will be dramatically different,” adds co-author Padmanabhan.

The fact that the Pauli principle can be violated may also help explain how matter behaves at the edge of black holes, Joseph says: “While we don’t know what happens to matter in a black hole, our model may give hints about how matter behaves as atoms collapse from the gravitational pull of black holes.”

  • Author

News Staff

  • Recent
  • Calling All Alumni Entrepreneurs: Apply for ’CUSE50 Awards
    Tuesday, June 24, 2025, By John Boccacino
  • Iran Escalation: Experts Available This Week
    Tuesday, June 24, 2025, By Vanessa Marquette
  • SCOTUS Win for Combat Veterans Backed by Syracuse Law Clinic
    Monday, June 23, 2025, By Vanessa Marquette
  • Syracuse Views Summer 2025
    Monday, June 23, 2025, By News Staff
  • Tiffany Xu Named Harry der Boghosian Fellow for 2025-26
    Friday, June 20, 2025, By Julie Sharkey

More In STEM

Student Innovations Shine at 2025 Invent@SU Presentations

Eight teams of engineering students presented designs for original devices to industry experts and investors at Invent@SU Final Presentations. This six-week summer program allows students to design, prototype and pitch their inventions to judges. During the program, students learn about…

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.