Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Research finds low oxygen resources in CNY’s Three Rivers system

Thursday, April 29, 2010, By News Staff
Share
CommunityResearch and Creative

A unique three-year longitudinal and vertical study of Central New York’s Three Rivers system—involving the Oswego, Oneida and Seneca rivers—has revealed that oxygen resources have become degraded by several stressors, including the impact of wastewater treatment plants, nonpoint runoff, an increase in invasive zebra mussels and channelization of the flow. As oxygen is necessary to support life in aquatic ecosystems, its measurement is essential for gauging the overall state of water bodies; in one of the study’s surveys, more than one-third of the 90-kilometer length of the river system failed to meet the New York water quality standard.

otiscoThis research has shown the importance of utilizing innovative technology to manage and monitor complex aquatic ecosystems in urban settings. Oftentimes, programs for treating water systems are implemented without robust data to identify the true source of the problem. The value of this case study comes from the large number of cause-and-effect relationships that were clearly identified through the monitoring system.

Steven Effler, director of research at the Upstate Freshwater Institute and Charles Driscoll, University Professor of Environmental Systems Engineering in the L.C. Smith College of Engineering and Computer Science at Syracuse University, presented recently the results of this Syracuse Center of Excellence Collaborative Activities in Research and Technology Innovation (CARTI) water research project—“An Intelligent Urban Environmental System (i-UES) for Central New York Water Resource Management”—to SyracuseCoE’s Scientific Advisory Committee. SyracuseCoE awards CARTI projects using funds from the U.S. Environmental Protection Agency. Co-authors of the study are Anthony R. Prestigiacomo and Adam J.P. Effler of the Upstate Freshwater Institute.

While much attention has been given to the impact of rivers on lake water quality, there had previously been little done to track the effects of lake outflows on receiving rivers. The water quality of these rivers is of great concern in order to protect their multiple uses—recreation, navigation, power generation and waste discharge—and to support regional development. Currently, the ability of the water systems to absorb the waste sent into them is significantly reduced.

“This study illustrates some of the complexities and challenges in managing urban water systems,” says Driscoll. “There are multiple factors associated with the low oxygen concentrations in the Three Rivers system. As a result, multiple approaches will be needed to improve the oxygen status of the river.”

To assess the water quality of such large river systems, the study conducted eight longitudinal surveys—four in summer 2007 and four in summer 2009—collecting data from more than 50 sites, utilizing special instrumentation that measures temperature, conductance (the capacity to conduct electricity), turbidity (muddiness of water due to stirred up sediment), chlorophyll levels and dissolved oxygen. The “boundary conditions” that show the baseline measurements were collected by solar-powered robotic monitoring platforms at the outflows of each lake.

With much conclusive evidence pointing to the oxygen depletion in the Three Rivers system, the research team recommends long-term, routine monitoring of the system, utilizing robotic systems. The researchers suggest that simply improving processes at individual wastewater treatment plants will not be enough to impact the system, and the team must continue to define dynamics and provide insights for rehabilitation. A water quality model can then guide management decisions for a recovery process.

A project summary is available at http://www.syracusecoe.org/projects/researchsummaries/DriscollC2.aspx.

  • Author

News Staff

  • Recent
  • DPS Earns Accreditation From International Association of Campus Law Enforcement Administrators
    Friday, June 6, 2025, By Kiana Racha
  • Rock Record Illuminates Oxygen History
    Thursday, June 5, 2025, By Dan Bernardi
  • What Can Ancient Climate Tell Us About Modern Droughts?
    Thursday, June 5, 2025, By News Staff
  • Blackstone LaunchPad Founders Circle Welcomes New Members
    Thursday, June 5, 2025, By Cristina Hatem
  • Syracuse Stage Concludes 2024-25 Season With ‘The National Pastime’
    Wednesday, June 4, 2025, By Joanna Penalva

More In STEM

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

What Can Ancient Climate Tell Us About Modern Droughts?

Climate change is reshaping the global water cycle, disrupting rainfall patterns and putting growing pressure on cities and ecosystems. Some regions are grappling with heavier rainfall and flooding, while others face prolonged droughts that threaten public health, disrupt economies and…

University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy

This month at the All Island Bioeconomy Summit held in Co. Meath, Ireland, it was announced that BiOrbic, Research Ireland Centre for Bioeconomy, comprising 12 leading Irish research universities in Ireland, signed a joint memorandum of understanding (MOU) with the Dynamic Sustainability…

Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science has named Bing Dong as the Traugott Professor of Mechanical and Aerospace Engineering. This endowed professorship is made possible by a 1998 gift from the late Fritz Traugott H’98 and his wife, Frances….

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.