Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Syracuse University physicists play key role in effort to find dark matter

Friday, February 19, 2010, By News Staff
Share
College of Arts and SciencesResearch and Creative

A team of scientists from the international Cryogenic Dark Matter Search experiment (CDMS), which includes physicists from Syracuse University, has identified two events in a new analysis of experimental data that have characteristics consistent with particles that make up dark matter. The latest findings were published Feb. 11 in Science Express, which publishes selected papers from the journal Science online in advance of print.

Dark matter does not emit or reflect light, but scientists believe that it makes up 85 percent of the matter in the Universe. “Dark matter is the glue that holds galaxies together,” says Richard Schnee, assistant professor of physics in SU’s College of Arts and Sciences. Schnee is the science coordinator for the CDMS experiment, a large-scale collaboration of 18 institutions, funded by the U.S. Department of Energy (DOE) and the National Science Foundation (NSF).

Schnee’s research group in the Department of Physics played a significant role in the project by helping to rewrite the software that was used to analyze that new data. The new software improved the ability of scientists to distinguish between background noise and signals that could be coming from dark matter. At SU, Mark Kos, a postdoctoral researcher, worked on the software redevelopment project with assistance from Joseph Kiveni, a physics graduate student.

Dark matter may be composed of weakly interacting massive particles (WIMPs). WIMPs would travel across space and time through ordinary matter, rarely leaving a trace. For example, scientists believe as many as 10 trillion WIMPs pass through one kilogram of earth per second, but perhaps as few as one per day will actually collide with an atomic nucleus and then bounce off. The event would produce a distinct signal or wave pattern, which scientists are searching for in the experimental data.

“This is the most sensitive CDMS experiment we have done so far,” Schnee says. “We saw two events. The last time we ran the experiment, we saw no events. This raises the possibility that at least one of the events could be a WIMP.”

While the new findings are promising, there is a chance that one or both signals could have been produced by background noise and not dark matter particles, CDMS scientists say. For the results to be considered as evidence of dark matter, there must be less than one chance in 1,000 that the observed events could be background noise. The latest result did not meet that test.

CDMS scientists are in the process of increasing the sensitivity of the detectors, which are housed in the Soudan Underground Laboratory, north of Duluth, Minn. They plan to re-run the experiments after the new detectors are in place later this year. They are hoping the increased sensitivity will enable them to find compelling evidence of dark matter.

The CDMS experiment has been searching for WIMPs since 2003. The experiment uses detectors made of crystals of germanium and silicon, which are cooled to temperatures near absolute zero. When particles hit the supercooled detectors, an electrical signal is produced. Special sensors detect these signals, which are then amplified and recorded for later data analysis.

The CDMS experiment includes more than 59 scientists and is managed by the DOE’s Fermi National Accelerator Laboratory. In addition to DOE and NSF funding, the experiment is supported by foreign funding agencies in Canada and Switzerland and from member institutions.

  • Author

News Staff

  • Recent
  • Ian ’90 and Noah Eagle ’19 Share a Love of Sportscasting and Storytelling (Podcast)
    Thursday, June 5, 2025, By John Boccacino
  • Rock Record Illuminates Oxygen History
    Thursday, June 5, 2025, By Dan Bernardi
  • What Can Ancient Climate Tell Us About Modern Droughts?
    Thursday, June 5, 2025, By News Staff
  • Blackstone LaunchPad Founders Circle Welcomes New Members
    Thursday, June 5, 2025, By Cristina Hatem
  • Syracuse Stage Concludes 2024-25 Season With ‘The National Pastime’
    Wednesday, June 4, 2025, By Joanna Penalva

More In STEM

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

What Can Ancient Climate Tell Us About Modern Droughts?

Climate change is reshaping the global water cycle, disrupting rainfall patterns and putting growing pressure on cities and ecosystems. Some regions are grappling with heavier rainfall and flooding, while others face prolonged droughts that threaten public health, disrupt economies and…

University’s Dynamic Sustainability Lab and Ireland’s BiOrbic Sign MOU to Advance Markets for the Biobased Economy

This month at the All Island Bioeconomy Summit held in Co. Meath, Ireland, it was announced that BiOrbic, Research Ireland Centre for Bioeconomy, comprising 12 leading Irish research universities in Ireland, signed a joint memorandum of understanding (MOU) with the Dynamic Sustainability…

Professor Bing Dong Named as the Traugott Professor of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science has named Bing Dong as the Traugott Professor of Mechanical and Aerospace Engineering. This endowed professorship is made possible by a 1998 gift from the late Fritz Traugott H’98 and his wife, Frances….

Physics Professor Honored for Efforts to Improve Learning, Retention

The Department of Physics in the College of Arts and Sciences (A&S) has made some big changes lately. The department just added an astronomy major approved by New York State and recently overhauled the undergraduate curriculum to replace traditional labs with innovative…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.