Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

NIH awards $3 million in grants to College of Arts and Sciences researchers for leukemia, nanobiotechnology projects

Tuesday, February 9, 2010, By News Staff
Share
College of Arts and SciencesResearch and Creative

Faculty researchers from the departments of biology and physics in Syracuse University’s College of Arts and Sciences have been awarded $3 million in grants from the National Institutes of Health. The funding will be used to expand ongoing research to find new ways to treat leukemia and to develop new nanotechnologies that can detect diseases, including cancers, at earlier stages than currently possible.

Liviu Movileanu, assistant professor in the Department of Physics, was awarded more than $1.4 million over five years to further his research in the relatively new field of nanobiotechnology. Liviu’s research team engineers protein nanopores that can detect DNA-containing molecules. The grant will enable the team to build experimental prototypes that could potentially be developed into new diagnostic tools for detecting cancers and other disease processes at much earlier stages than currently possible.

Nanopores—which are about 20 times larger than an atom (a trillion could fit on the head of a pin)—are devices in cell membranes through which proteins are transported in and out of cells, one molecule at a time. The process causes a change in tiny electric currents flowing through the nanopore, which are unique to the molecule being transported. This characteristic enables scientists to identify the molecule by its electric signature as it moves through the nanopore.

Michael Cosgrove, assistant professor in the Department of Biology, was awarded more than $1.5 million to further his research on Mixed Lineage Leukemia proteins (MLL), which help regulate the formation of white blood cells. In normal cells, MLL combines with three other proteins to create a molecular switch that controls the way DNA is packaged when white blood cells are created. A broken MLL switch can prevent white blood cells from properly maturing, which can lead to leukemia.

Learning how to reprogram the way DNA is packaged in cancerous cells is a relatively new idea that scientists believe will lead to better treatments for leukemia and other types of cancers with fewer side effects. Cosgrove’s research team is making important contributions to the field by discovering how DNA packaging proteins work in normal cells and by identifying ways to fix broken MLL switches and reprogram cancerous cells into normal cells.

Movileanu holds a Ph.D. in biophysics from the University of Bucharest. He was a postdoctoral fellow in biochemistry and biophysics at the University of Missouri-Kansas City (1997-98) and at Texas A&M University (1999-2004). Movileanu has a second NIH grant on a collaborative project with researchers at the University of Massachusetts Medical School at Worcester. His research has also received funding from the National Science Foundation. Further information about his research is available at http://physics.syr.edu/~lmovilea/.

Cosgrove earned a Ph.D. at Syracuse University and was a postdoctoral researcher at the Johns Hopkins School of Medicine and Cornell University. His research has also received funding from the Leukemia Research Foundation, the March of Dimes Foundation and the American Cancer Society. Further information about his research is available at http://biology.syr.edu/cosgrove/index.html.

  • Author

News Staff

  • Recent
  • Oren Lyons Jr., Roy Simmons Jr. Honored With Alfie Jacques Ambassador Award
    Wednesday, June 11, 2025, By John Boccacino
  • Deadline Set for Fiscal 2025 Year End Business
    Monday, June 9, 2025, By News Staff
  • The Libraries’ Resources: A Staff and Faculty Benefit
    Monday, June 9, 2025, By News Staff
  • Forecasting the Future With Fossils
    Sunday, June 8, 2025, By Caroline K. Reff
  • DPS Earns Accreditation From International Association of Campus Law Enforcement Administrators
    Friday, June 6, 2025, By Kiana Racha

More In STEM

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

What Can Ancient Climate Tell Us About Modern Droughts?

Climate change is reshaping the global water cycle, disrupting rainfall patterns and putting growing pressure on cities and ecosystems. Some regions are grappling with heavier rainfall and flooding, while others face prolonged droughts that threaten public health, disrupt economies and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.