Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

New antimicrobial webs developed by Syracuse University researchers sterilize medical implants for up to 14 days, reduce chance of infection

Tuesday, September 15, 2009, By News Staff
Share
Research and Creative

Treatment of hospital-related infections in the United States costs up to $11 billion a year, and about half of those infections are related to medical devices implanted in patients. Until now, efforts to control drug-resistant biofilms on such devices have been largely unsuccessful.

New hydrogel mats developed by collaborators Pat Mather and Dacheng Ren of the Syracuse Biomaterials Institute (SBI) at Syracuse University present a solution. The new materials combine microbe-killing silver nitrate with the surprising qualities of a hybrid electrospun fiber web that extends anti-infection protection for up to 14 days. 

“We’re excited about what this innovation can mean to patients and care providers,” says Mather, the director of SBI and the Milton and Ann Stevenson Professor of Biomedical and Chemical Engineering at Syracuse University. “When we tested alternative materials, we saw biofilms forming on the first day despite the silver nitrate. However, our new nanoscale fibers demonstrate a unique ability to prolong the effect of the silver coating.”

This innovation could significantly reduce infection rates among patients who need vascular or urinary catheters or who require bandages, wound dressings or reconstructive oral and bone surgery. It could also relieve patients’ pain and reduce nursing costs.

In addition, when used in wound dressings, the electrospun web can prevent or reduce damage to the skin at the edges of wounds. This can be caused by lateral wicking, an undesirable side effect of many wound dressings.

The benefits of the antimicrobial webs are expected to be applicable in other biomedical uses. A provisional patent on the new technology has been filed, and research is continuing into other polymers and antimicrobial agents. Readily adjustable chemical structures make it possible to tune hydrogel ingredients in the search for other valuable physical properties.

This finding is described in a publication to appear in the journal Biomacromolecules (DOI: 10.1021/bm900620w) and available online at http://pubs.acs.org/.  

Along with their roles at SBI, both Mather and Ren, assistant professor, are on the faculty of SU’s L.C. Smith College of Engineering and Computer Science (LCS).

  • Author

News Staff

  • Recent
  • Tiffany Xu Named Harry der Boghosian Fellow for 2025-26
    Friday, June 20, 2025, By Julie Sharkey
  • Registration Open for Esports Campus Takeover Hosted by University and Gen.G
    Thursday, June 19, 2025, By Matt Michael
  • 2 Whitman Students Earn Prestigious AWESOME Scholarship
    Tuesday, June 17, 2025, By News Staff
  • WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony
    Friday, June 13, 2025, By News Staff
  • Inaugural Meredith Professor Faculty Fellows Announced
    Friday, June 13, 2025, By Wendy S. Loughlin

More In STEM

WiSE Hosts the 2025 Norma Slepecky Memorial Lecture and Undergraduate Research Prize Award Ceremony

This spring, Women in Science and Engineering (WiSE) held its annual Norma Slepecky Memorial Lecture and Award Ceremony. WiSE was honored to host distinguished guest speaker Joan-Emma Shea, who presented “Self-Assembly of the Tau Protein: Computational Insights Into Neurodegeneration.” Shea…

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.