Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Researchers Confirm Marine Animals Live Longer at High Latitudes

Wednesday, August 3, 2016, By Rob Enslin
Share
College of Arts and SciencesResearch and Creative
David Moss

David Moss

Researchers in the Department of Earth Sciences have shown that high-latitude bivalves live longer and grow slower than those in the tropics. Their findings are the subject of an article in the “Proceedings of the Royal Society B” (The Royal Society, 2016).

David Moss, a Ph.D. student in the Earth sciences department, located in the College of Arts and Sciences, is the article’s lead author.

“We’ve created a global database of more than 1,100 populations of marine bivalves, documenting their maximum reported lifespan and growth rate, along with body size,” he says, referring to animals such as oysters, clams, scallops and mussels. “Cold-blooded marine animals, such as bivalves, are influenced by their environment, so latitudinal patterns that exist in bivalves likely exist in other invertebrates, too.”

After months of work by Moss and other members of the Earth sciences department, two patterns have emerged. The first reveals that, as a bivalve’s lifespan increases, its growth rate decreases. The second shows that long life and slow growth are common among animals near the North and South poles, whereas tropical bivalves, close to the equator, are fast-growing and short-lived.

“As the poles are thought to harbor ecosystems like those from millions of years ago, our data suggest that more ancient animals were slow-growing,” Moss says.

Bivalve mollusk

Among the bivalve mollusks the group has studied is the “Artica islandica,” found off the coast of Iceland. The world’s oldest animal, it is capable of living for more than 500 years.

Professor Linda Ivany ’88, in whose lab Moss is based, says bivalves are just as abundant in the fossil record as they are in today’s oceans. As a result, she and her students can easily recover bivalve lifespans and growth rates by studying the bands in their fossilized shells, a process analogous to tree-ring dating.

Ivany says this kind of work has implications for the study of the evolutionary history of life on Earth, and may help explain why the metabolism of cold-blooded animals has changed over time.

“Research shows that marine animals have gotten bigger over the last 500 million years,” Ivany says. “Because body size is determined by how fast you grow and how long you grow, this work sets the stage for us to move back in time and answer evolutionary questions about why and how animals have gotten bigger.”

Based on his group’s observations, Moss argues that the increase in body size of marine bivalves throughout the Phanerozoic, the current geologic eon stretching back more than 540 million years, should be accompanied by a shift to faster growth and a shorter lifespan.

Linda Ivany

Linda Ivany

Moss also hopes to pinpoint why biodiversity is high in the tropics and low near the poles.

“Short generation times and high mutation rates associated with short lifespan and fast growth enable new species to appear at a faster rate in the tropics,” he says. “The distribution of lifespan and growth with latitude might help explain one of the more fundamental patterns in the evolutionary and ecological history of animal life on the planet: the latitudinal diversity gradient.”

In addition to Moss and Ivany, the article is co-authored by Emily Judd, also a Ph.D. student in Earth sciences; Patrick Cummings ’17, Claire Bearden ’16, and Woo-Jun Kim ’15, all undergraduates at the time of the project; and Emily Artruc and Jeremy Driscoll, 2016 graduates of the SUNY College of Environmental Science and Forestry.

All of the A&S participants have belonged to Ivany’s lab.

  • Author

Rob Enslin

  • Recent
  • Doctoral Candidate Wins Grant for Research on Infrastructure, Violence and Resistance in Pakistan
    Friday, August 1, 2025, By News Staff
  • Co-President of Disability Law Society Eyes Career in National Security Law in Washington
    Thursday, July 31, 2025, By Jordan Bruenger
  • Lender Center New York Event Gathers Wealth Gap Experts
    Wednesday, July 30, 2025, By Diane Stirling
  • After Tragedy, Newhouse Grad Rediscovers Her Voice Through Podcasting
    Wednesday, July 30, 2025, By Chris Velardi
  • Back-to-School Shopping: More Expensive and Less Variety of Back-to-School Items
    Tuesday, July 29, 2025, By Daryl Lovell

More In STEM

New Study Reveals Ozone’s Hidden Toll on America’s Trees

A new nationwide study reveals that ozone pollution—an invisible threat in the air—may be quietly reducing the survival chances of many tree species across the United States. The research, published in the Journal of Geophysical Research: Atmospheres is the first…

Inspiring the Next Generation of STEM Enthusiasts

A friendly competition is brewing in the corner of a basement classroom in Link Hall during the annual STEM Trekkers summer program, where students are participating in a time-honored ritual: seeing who can build a paper airplane that travels the…

5 Surprisingly Simple Ways to Use Generative Artificial Intelligence at Work

Not too long ago, generative artificial intelligence (AI) might’ve sounded like something out of a sci-fi movie. Now it’s here, and it’s ready to help you write emails, schedule meetings and even create presentations. In a recent Information Technology Services…

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.