Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Better Cancer Treatment Through Nanotechnology

Wednesday, September 2, 2015, By Matt Wheeler
Share
Research and Creative

Assistant Professor Shikha Nangia in the College of Engineering and Computer Science is collaborating with Assistant Professor Juntao Luo of Upstate Medical University to develop a way to deliver cancer-fighting drugs more effectively using nanoparticles. The National Institutes of Health has funded their efforts, awarding Upstate a two-year grant for the proposal titled “Rational Design and High Throughput Synthesis of Nanocarriers for Efficient Drug Delivery.”

A view inside a nanocarrier with anticancer drug (orange) in its core

A view inside a nanocarrier with anticancer drug (orange) in its core

In chemotherapy, cancer-fighting drugs are often given to patients through an intravenous injection. Once injected, they spread throughout the body and damage healthy cells along with the cancerous cells, causing many side effects. One way to prevent the drugs from attacking healthy cells and target cancer more specifically is to encapsulate them in some kind of a carrier that takes the drug as its cargo and delivers it to cancerous tumors. Inside the tumor, the carriers break down, releasing the drug and killing the cancerous cells. This happens at one-billionth of a meter, at the nanoscale—hence the term “nanocarrier.”

To design an efficient nanocarrier is no trivial task, and to design a nanocarrier based on the drug structure is even more challenging. Cancer patients are currently given DOXIL, a nanocarrier that releases the drug quite slowly. The novel nanocarriers developed in this study have a well-controlled drug release profile and show much better efficacy than DOXIL in cancer treatment in animal models.

Nangia adds, “With this work, Dr. Luo has found the nanocarriers are stable in the blood stream and they release the drug more efficiently. It’s going make chemotherapy more effective for cancer patients.”

Luo’s lab designs and synthesizes the nanocarrier particles, loads them with the drugs and tests them on mice. Nangia’s lab handles the computational end of things, simulating nanocarrier formation and drug interactions that in turn help the design of even better nanocarriers for efficient drug loading.

When Nangia and Luo have perfected their work, their nanocarriers will go through the process of clinical trials and additional research. Eventually, cancer patients should benefit from this work through better treatment of their disease and an improved rate of recovery.

  • Author

Matt Wheeler

  • Recent
  • Deadline Set for Fiscal 2025 Year End Business
    Monday, June 9, 2025, By News Staff
  • The Libraries’ Resources: A Staff and Faculty Benefit
    Monday, June 9, 2025, By News Staff
  • Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor
    Monday, June 9, 2025, By Eileen Korey
  • Forecasting the Future With Fossils
    Sunday, June 8, 2025, By Caroline K. Reff
  • DPS Earns Accreditation From International Association of Campus Law Enforcement Administrators
    Friday, June 6, 2025, By Kiana Racha

More In STEM

Endowed Professorship Recognizes Impact of a Professor, Mentor and Advisor

Bao-Ding “Bob” Cheng’s journey to Syracuse University in pursuit of graduate education in the 1960s was long and arduous. He didn’t have the means for air travel, so he voyaged more than 5,000 nautical miles by boat from his home…

Forecasting the Future With Fossils

One of the most critical issues facing the scientific world, no less the future of humanity, is climate change. Unlocking information to help understand and mitigate the impact of a warming planet is a complex puzzle that requires interdisciplinary input…

ECS Professor Pankaj K. Jha Receives NSF Grant to Develop Quantum Technology

Detecting single photons—the smallest unit of light—is crucial for advanced quantum technologies such as optical quantum computing, communication and ultra-sensitive imaging. Superconducting nanowire single-photon detectors (SNSPDs) are the most efficient means of detecting single photons and these detectors can count…

Rock Record Illuminates Oxygen History

Several key moments in Earth’s history help us humans answer the question, “How did we get here?” These moments also shed light on the question, “Where are we going?,” offering scientists deeper insight into how organisms adapt to physical and…

What Can Ancient Climate Tell Us About Modern Droughts?

Climate change is reshaping the global water cycle, disrupting rainfall patterns and putting growing pressure on cities and ecosystems. Some regions are grappling with heavier rainfall and flooding, while others face prolonged droughts that threaten public health, disrupt economies and…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.