Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Capturing Carbon through Cleaner Combustion

Tuesday, August 4, 2015, By Matt Wheeler
Share
College of Engineering and Computer ScienceResearch and Creative

When it comes to releasing carbon dioxide into the atmosphere, the combustion of fossil fuels is far and away the biggest offender. In fact, the Department of Energy estimates that the process creates approximately 30 billion tons of CO2 every year—approximately 40 percent of all carbon emissions.

The burning of fossil fuels remains our primary source of energy, so researchers are trying to make the process cleaner.

The burning of fossil fuels remains our primary source of energy, so researchers are trying to make the process cleaner.

Given the current limitations on clean, renewable energy technology, such as solar power, and its relatively low implementation, the burning of fossil fuels remains our primary source of energy. If we can’t go without it for the immediate future, we need to do what we can to make the process cleaner. Researchers in the College of Engineering and Computer Science are contributing to the cause.

In Associate Professor of Mechanical and Aerospace Engineering Jeongmin Ahn’s Combustion & Energy Research (COMER) Laboratory, graduate student Ryan Falkenstein-Smith and his fellow researchers are developing a material to facilitate the capture of carbon dioxide at fossil fuel-burning power plants before it can be released into the atmosphere.

In traditional fossil fuel combustion, a chemical reaction takes place between fuel (oil, coal, or natural gas) and air (made up primarily of nitrogen and oxygen). This produces heat, light and useful energy. Molecularly, what’s left is nitrogen, carbon dioxide and water vapor. The material Falkenstein-Smith is developing uses a novel technique to remove nitrogen from the equation. By doing this, the combustion process requires less energy and is more efficient.

Typically, removing nitrogen from air requires the use of an air separation unit. These tend to be energy-hungry devices—the amount of energy they eat up counters any energy savings gained by burning pure oxygen. In the COMER lab, researchers are trying to overcome this obstacle. Their material is a fabricated ceramic that acts as an ionic conductor. The material is molded into hollow fibers. Using a simple chemical gradient, it is able to move oxygen ions through its membrane, while blocking the nitrogen from the combustion process.

The oxygen is fed through the hollow fibers along with the fuel. They ignite and after combustion, carbon dioxide and water vapor are left, which can be frozen and buried, or even put to use, sometimes in something as common as carbonating soda.

There is increasing pressure for industry to reduce carbon dioxide emissions from combustion processes. The fabrication, characterization and experimentation of this material is just one piece of solving that large puzzle, but eventually, it could have a big impact. Falkenstein-Smith is eager to see ideas like his implemented in the near future.

He says, “In the COMER lab, I get to work on projects that could one day make a significant difference in the real world and that’s the reason I wanted to become an engineer. I want to create something with value. I feel that I’m doing that with this research. Carbon capture is a hot topic right now, and it will continue to develop. I imagine that technology like ours will be widespread in 10-20 years. It’s amazing to be a part of a team that is focusing on it so early on.”

  • Author

Matt Wheeler

  • Recent
  • New Faculty Members Bring Expertise in Emerging Business Practices to the Whitman School
    Tuesday, September 16, 2025, By Dawn McWilliams
  • Partnership With Sony Electronics to Bring Leading-Edge Tech to Help Ready Students for Career Success
    Tuesday, September 16, 2025, By Genaro Armas
  • Art Museum Announces Charlotte Bingham ’27 as 2025-26 Luise and Morton Kaish Fellow
    Tuesday, September 16, 2025, By Taylor Westerlund
  • Zachary K. Pecenak to Host Venture Capitalist in Residence Office Hours
    Tuesday, September 16, 2025, By Cristina Hatem
  • Syracuse Stage Opens Season With Production of WWI Musical ‘The Hello Girls’
    Monday, September 15, 2025, By Joanna Penalva

More In STEM

Professor Shikha Nangia Named as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering

The College of Engineering and Computer Science (ECS) has announced the appointment of Shikha Nangia as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering. Made possible by a gift from the late Milton and Ann Stevenson,…

Celebrating a Decade of Gravitational Waves

Ten years ago, a faint ripple in the fabric of space-time forever changed our understanding of the Universe. On Sept. 14, 2015, scientists at the Laser Interferometer Gravitational-Wave Observatory (LIGO) made the first direct detection of gravitational waves—disturbances caused by the…

Quiet Campus, Loud Impact: Syracuse Research Heats Up Over Summer

While summer may bring a quiet calm to the Quad, the drive to discover at Syracuse University never rests. The usual buzz of students rushing between classes may fade, but inside the labs of the College of Arts and Sciences…

Tissue Forces Help Shape Developing Organs

A new study looks at the physical forces that help shape developing organs. Scientists in the past believed that the fast-acting biochemistry of genes and proteins is responsible for directing this choreography. But new research from the College of Arts…

Maxwell’s Baobao Zhang Awarded NSF CAREER Grant to Study Generative AI in the Workplace

Baobao Zhang, associate professor of political science and Maxwell Dean Associate Professor of the Politics of AI, has received a National Science Foundation Faculty Early Career Development (CAREER) Award for $567,491 to support her project, “Future of Generative Artificial Intelligence…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.