Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Team led by SU professor discovers new technique to engineer nanoscale templates

Thursday, March 25, 2010, By Kelly Homan Rodoski
Share
Research and Creative

A critical challenge in nanotechnology is developing means to routinely manipulate material structure and morphology at the nanoscale. Often, scientists use templates that render shape, form and structure to the final product.

A team led by Syracuse University researcher Radhakrishna Sureshkumar, professor and chair of the Department of Biomedical and Chemical Engineering in the L.C. Smith College of Engineering and Computer Science and professor of physics in The College of Arts and Sciences, has discovered a new and broadly applicable technique to engineer nanoscale templates.

This technique, reported in the March 21 issue of the journal Nature Materials (http://dx.doi.org//10.1038/NMAT2724), does not rely on complicated and laborious chemical synthesis. Simply put, it is a “flow and gel” technique. Specifically, Sureshkumar and his fellow researchers discovered that when translucent suspensions of nano-rods, made up of ubiquitous “soapy” molecules or “surfactants,” flow through microfluidic channels, i.e., channels with width and height comparable to one-tenth the size of a human hair, the rods spontaneously self-assemble into highly stable networks, thereby causing the fluid to form soft gels.

“Such networks offer tremendous potential to be functionalized to produce nanomaterials useful for molecular detection (sensors), cellular delivery of therapeutics, catalysis and photonics, including efficient harvesting of solar energy,” says Sureshkumar.

Surfactants are present in almost every walk of life and technology—laundry detergents and shampoos, emulsions, therapeutics, cosmetics, fire-fighting chemicals, fluid mixtures used in enhanced oil recovery, and even in our lungs to ensure normal alveolar function.

“Hence, one can envision numerous exciting applications of the ‘flow and gel’ process,” says Sureshkumar. “Further, it is a continuous and non-caustic process that can be scaled up. Functionalizing the nanogel could be done by integrating a second flow stream containing the desired active agent, such as nanoparticles or therapeutic molecules, into the flow system.”

The discovery team consists of Sureshkumar’s former graduate student Mukund Vasudevan at Washington University in St. Louis (now at Cytec Industries, Stamford, Conn.), undergraduate researcher Eric Buse and graduate student Hare Krishna at Washington University in St. Louis, postdoctoral fellow Donglai Lu and professor Amy Shen at the University of Washington, Seattle, and professors Bamin Khomami and Ramki Kalyanaraman of the University of Tennessee, Knoxville.

Sureshkumar’s research group is now exploring robust means to modify the “flow and gel” process to incorporate optically active nanoparticles into the surfactant templates in an effort to make broadband antennas for efficiently harnessing the sun’s energy. Another focus of his research is to understand the fundamental mechanisms of flow-induced self-assembly by utilizing large-scale molecular dynamics simulations. These efforts are supported in part by the National Science Foundation.

  • Author

Kelly Rodoski

  • Recent
  • Q&A: Reflecting on the 80th Anniversary of the Atomic Bombings, Lasting Impact
    Monday, August 4, 2025, By Vanessa Marquette
  • Doctoral Candidate Wins Grant for Research on Infrastructure, Violence and Resistance in Pakistan
    Friday, August 1, 2025, By News Staff
  • Co-President of Disability Law Society Eyes Career in National Security Law in Washington
    Thursday, July 31, 2025, By Jordan Bruenger
  • Lender Center New York Event Gathers Wealth Gap Experts
    Wednesday, July 30, 2025, By Diane Stirling
  • After Tragedy, Newhouse Grad Rediscovers Her Voice Through Podcasting
    Wednesday, July 30, 2025, By Chris Velardi

More In STEM

New Study Reveals Ozone’s Hidden Toll on America’s Trees

A new nationwide study reveals that ozone pollution—an invisible threat in the air—may be quietly reducing the survival chances of many tree species across the United States. The research, published in the Journal of Geophysical Research: Atmospheres is the first…

Inspiring the Next Generation of STEM Enthusiasts

A friendly competition is brewing in the corner of a basement classroom in Link Hall during the annual STEM Trekkers summer program, where students are participating in a time-honored ritual: seeing who can build a paper airplane that travels the…

5 Surprisingly Simple Ways to Use Generative Artificial Intelligence at Work

Not too long ago, generative artificial intelligence (AI) might’ve sounded like something out of a sci-fi movie. Now it’s here, and it’s ready to help you write emails, schedule meetings and even create presentations. In a recent Information Technology Services…

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.