Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Maroo Receives CAREER Grant to Investigate Cooling Next-Gen Tech

Friday, February 6, 2015, By Matt Wheeler
Share
College of Engineering and Computer ScienceResearch and Creative

As technology advances to meet our ever-growing needs, the size of our electronics is decreasing while their performance is increasing. Computer chips are a good example of this. We want them to be small, yet capable of faster processing speeds.

Shalabh Maroo

Shalabh Maroo

All electronics heat up when they are operating. However, the more work they do, the hotter they get, especially when they have a small surface area. All of this heat can diminish their performance significantly. Therefore, rapid and efficient cooling is going to be required to make next-generation computer chips and energy conversion devices possible.

One way to cool computer chips is with boiling—currently the most effective way to remove heat from a surface. Unfortunately, it has its limitations. First, a chip is encased in a heat-exchanging device. As the chip heats up, the heat is transferred to a liquid within the heat exchanger. When it begins to boil, bubbles form on the surface as in a pot of boiling water. The higher the heat transfer, the more rigorous the boiling becomes. With increasing heat, the number of bubbles forming on the surface outnumbers those leaving the surface, causing an accumulation of bubbles that creates a layer of vapor, inhibiting the transfer of heat from the surface into the liquid. Because of this, heat removal tops off at 100-300 watts per square centimeter of area. While substantial, this is still not enough for next-generation devices, where cooling rates of over 1,000 watts per square centimeter are desired.

Professor Shalabh Maroo in the Department of Mechanical and Aerospace Engineering was recently awarded $500,000 from the National Science Foundation’s (NSF) Faculty Early Career Development (CAREER) program for his proposal “Experimental and Numerical Study of Nanoscale Evaporation Heat Transfer for Passive-Flow Driven High-Heat Flux Devices.” Maroo will investigate the fundamental physics associated with nanoscale meniscus evaporation and passive liquid flow to remove large amounts of heat from small surfaces in very short amounts of time.

“Theoretically, we can prevent boiling with use of novel nanotechnology, and achieve nanoscale evaporation, which can remove 10 times as much heat compared to boiling,” says Maroo.

Maroo and his research group will design, fabricate and test nano-devices using molecular-level computer simulations and experiments, and they also aim to uncover the parameters that dictate the steady and optimal performance of the nanoscale evaporation-based device. Eventually, this knowledge could be applied to achieve next-generation heat exchangers for thermal management of electronics and renewable energy technologies, such as concentrated solar photovoltaic cells.

Maroo acknowledges that part of the credit for his NSF CAREER grant should go to the research and hard work of his students, especially Ph.D. students An Zou and Sumith YD, and senior Nikolay Rodionov. Additional information about Maroo’s grant and his research group can be found here and on his lab’s website —  http://maroo.syr.edu .

Educational Outreach

Maroo’s research includes development and implementation of a three-week module on “Nano-science and Nano-engineering” for first-year undergraduate students in ECS 101. He will also support a yearly research opportunity to a minority undergraduate student and yearly workshops on nanotechnology to middle school students in the Syracuse City School District in collaboration with the Upstate Louis Stokes Alliance for Minority Participation.

 

  • Author

Matt Wheeler

  • Recent
  • Applications Open for 2025 ’Cuse Tank Competition
    Thursday, September 18, 2025, By News Staff
  • Brynt Parmeter Joins Maxwell School as Phanstiel Chair in Leadership
    Thursday, September 18, 2025, By Jessica Youngman
  • Winners of LaunchPad’s 2025 Ideas Fest
    Thursday, September 18, 2025, By News Staff
  • Resistance Training May Improve Nerve Health, Slow Aging Process
    Wednesday, September 17, 2025, By Matt Michael
  • New Faculty Members Bring Expertise in Emerging Business Practices to the Whitman School
    Tuesday, September 16, 2025, By Dawn McWilliams

More In STEM

Professor Shikha Nangia Named as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering

The College of Engineering and Computer Science (ECS) has announced the appointment of Shikha Nangia as the Milton and Ann Stevenson Endowed Professor of Biomedical and Chemical Engineering. Made possible by a gift from the late Milton and Ann Stevenson,…

Celebrating a Decade of Gravitational Waves

Ten years ago, a faint ripple in the fabric of space-time forever changed our understanding of the Universe. On Sept. 14, 2015, scientists at the Laser Interferometer Gravitational-Wave Observatory (LIGO) made the first direct detection of gravitational waves—disturbances caused by the…

Quiet Campus, Loud Impact: Syracuse Research Heats Up Over Summer

While summer may bring a quiet calm to the Quad, the drive to discover at Syracuse University never rests. The usual buzz of students rushing between classes may fade, but inside the labs of the College of Arts and Sciences…

Tissue Forces Help Shape Developing Organs

A new study looks at the physical forces that help shape developing organs. Scientists in the past believed that the fast-acting biochemistry of genes and proteins is responsible for directing this choreography. But new research from the College of Arts…

Maxwell’s Baobao Zhang Awarded NSF CAREER Grant to Study Generative AI in the Workplace

Baobao Zhang, associate professor of political science and Maxwell Dean Associate Professor of the Politics of AI, has received a National Science Foundation Faculty Early Career Development (CAREER) Award for $567,491 to support her project, “Future of Generative Artificial Intelligence…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.