Skip to main content
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
Sections
  • All News
  • Arts & Culture
  • Business & Economy
  • Campus & Community
  • Health & Society
  • Media, Law & Policy
  • STEM
  • Veterans
  • University Statements
  • Syracuse University Impact
  • |
  • The Peel
  • Athletics
  • Home
  • About
  • Faculty Experts
  • For The Media
  • ’Cuse Conversations Podcast
  • Topics
    • Alumni
    • Events
    • Faculty
    • Students
    • All Topics
  • Contact
  • Submit
STEM

Green’s Research Helps Navy Design Vessels That Swim

Monday, October 13, 2014, By Matt Wheeler
Share
College of Engineering and Computer ScienceResearch and Creative

Few things move with the agility or grace of a fish. Using subtle, waving movements, they slip silently through water. Yet, look closely and you can see that not all fish swim alike. Great white sharks with forked tails are built for bursts of speed. Serpentine eels have the ability to change direction on a dime. Tunas have a streamlined form that allows them to travel smoothly for long distances. The differences in their bodies and fins, developed over eons of evolutionary pressure, give them disparate abilities to move through the water.

Melissa Green in her lab

Melissa Green in her lab

The effective swimming methods of fish and other aquatic animals are the inspiration for the Office of Naval Research’s (ONR) Biologically Inspired Underwater Propulsion Program. The program aims to create underwater vessels that mimic, and even improve upon, the movement of underwater wildlife. As part of this program, Melissa Green, assistant professor in the College of Engineering and Computer Science, has been awarded a three-year, $650,000 grant for her work on “Lagrangian methods in unsteady propulsion: characterizing vortex wake structure and force production.” Green specializes in the area of fundamental fluid dynamics, specifically vortex dynamics and bio-inspired propulsion

Of all the features that affect fish movement, the flapping of the tail, or caudal fin, is one of the most important. This is where Green and her research team come in. In a water channel in her lab at the Syracuse Center of Excellence (CoE), she will experiment with a rigid piece of thin plastic that is equipped to move side to side at different speeds, just like a caudal fin, as gallons of water flow around it. Green will measure the force on the plastic flapping fin and observe the swirling water that the swish of the plastic tail leaves behind.

A visualization of the analysis on a trapezoidal panel—the model of caudal fin flapping

A visualization of the analysis on a trapezoidal panel—the model of caudal fin flapping

Green explains, “Even with a simulated caudal fin so simple and at a low amplitude of flapping, you get flow dynamics that are really three dimensional, rich and complex. I use Langrangian coherent structures to look at this swirling water the flapping creates, known as vortex streets. Vortex streets are like a signature of what happens when the fin interacts with the water. You can tell if the structure of the wake propulsion was created efficiently or not. With this grant, our job is to characterize and quantitatively map these structures to the actuation used to create them, and to the measured propulsive performance. The long-term goal is to be able to choose to make a wake that looks like what we know is an efficient wake, or a powerful wake, or a ‘sharp right turn,’ and then we can start stitching actuation together for more complex motion planning.”

This research will inform the design and control strategies for a range of underwater vehicle applications—primarily small, unmanned vessels. Green’s work will help ONR determine what it takes to make a vehicle with quick, powerful bursts of speed, travel long distances, using very little energy, or be able to maneuver and change direction suddenly. Through the research of Green’s labs and the ONR’s Biologically Inspired Underwater Propulsion Program, man-made “fish” may eventually out-swim the genuine article.

  • Author

Matt Wheeler

  • Recent
  • Haudenosaunee Welcome Gathering: An Invitation to Celebrate on Sacred Land
    Friday, August 15, 2025, By Dara Harper
  • Libraries’ Fall 2025 Hours and Welcome Week Activities
    Friday, August 15, 2025, By Cristina Hatem
  • Karalunas Appointed Cobb-Jones Clinical Psychology Endowed Professor
    Friday, August 15, 2025, By Sean Grogan
  • Auxiliary Services Announces Next Steps in Office Refreshment, Vending Transitions
    Thursday, August 14, 2025, By Jennifer DeMarchi
  • NASCAR Internship Puts Jenna Mazza L’26 on the Right Track to Career in Sports Law
    Wednesday, August 13, 2025, By Caroline K. Reff

More In STEM

New Study Reveals Ozone’s Hidden Toll on America’s Trees

A new nationwide study reveals that ozone pollution—an invisible threat in the air—may be quietly reducing the survival chances of many tree species across the United States. The research, published in the Journal of Geophysical Research: Atmospheres is the first…

Inspiring the Next Generation of STEM Enthusiasts

A friendly competition is brewing in the corner of a basement classroom in Link Hall during the annual STEM Trekkers summer program, where students are participating in a time-honored ritual: seeing who can build a paper airplane that travels the…

5 Surprisingly Simple Ways to Use Generative Artificial Intelligence at Work

Not too long ago, generative artificial intelligence (AI) might’ve sounded like something out of a sci-fi movie. Now it’s here, and it’s ready to help you write emails, schedule meetings and even create presentations. In a recent Information Technology Services…

NSF I-Corps Semiconductor and Microelectronics Free Virtual Course Being Offered

University researchers with groundbreaking ideas in semiconductors, microelectronics or advanced materials are invited to apply for an entrepreneurship-focused hybrid course offered through the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The free virtual course runs from Sept. 15 through…

Jianshun ‘Jensen’ Zhang Named Interim Department Chair of Mechanical and Aerospace Engineering

The College of Engineering and Computer Science (ECS) is excited to announce that Professor Jianshun “Jensen” Zhang has been appointed interim department chair of mechanical and aerospace engineering (MAE), as of July 1, 2025. Zhang serves as executive director of…

Subscribe to SU Today

If you need help with your subscription, contact sunews@syr.edu.

Connect With Us

  • X
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
Social Media Directory

For the Media

Find an Expert Follow @SyracuseUNews
  • Facebook
  • Instagram
  • Youtube
  • LinkedIn
  • @SyracuseU
  • @SyracuseUNews
  • Social Media Directory
  • Accessibility
  • Privacy
  • Campus Status
  • Syracuse.edu
© 2025 Syracuse University News. All Rights Reserved.